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A New Discrete Impulse Response Gramian and its
Application to Model Reduction

S. Azou, P. Bréhonnet, P. Vilbé, and L. C. Calvez

Abstract—Some fundamental properties of a new impulse response
Gramian for linear, time-invariant, asymptotically stable, discrete
single-input–single-output (SISO) systems are derived in this note. This
Gramian is system invariant and can be found by solving a Lyapunov
equation. The connection with standard controllability, observability, and
cross Gramians is proven. The significance of these results in model-order
reduction is highlighted with an efficient procedure.

Index Terms—Discrete time systems, Gramians, model reduction.

I. INTRODUCTION

Impulse response Gramians (IRG) have been introduced by Sreeram
and Agathoklis to derive reduced-order models (ROM) for linear, time-
invariant, asymptotically stable, continuous [1] or discrete [2] single-
input–single-output (SISO) systems. Usefulness of these Gramians has
also been shown in a system identification application.

An IRG contains elements that are inner products of functions given
as successive derivatives or delays of the impulse response in contin-
uous case and discrete case, respectively. It can be obtained by solving
the Lyapunov equation for the controllability canonical realization of
the system.

In [1], the approach is based on matching the firstq Markov parame-
ters andq�q entries of the IRG. The procedure has been extended to the
discrete case in [3], where the relation to theq-Markov cover method
is discussed [4]–[6]. This method usually yields good approximations
at high frequencies, but a large error on the steady-state behavior is
noticed. An improved low-frequency approximation is achieved for
discrete systems in [10] by matching some initial time moments and
low-frequency power moments. For continuous systems, this drawback
has been overcome with a reciprocal transformation [7], [8] to preserve
the firstq time moments andq� q entries of the Gram matrix [9]. An-
other ROM building procedure, both valid in the continuous case [11]
and in the discrete case [2], is based on the approximation of a energy
criteria by a diagonalization and a direct truncation of the IRG. Use of
the singular perturbation technique is suggested if a good approxima-
tion at low frequency is required. Note that the methods in [1], [2], and
[11] still apply if the IRG is weighted (WIRG).

The approach in [2] has been recently extended to mul-
tiple-input–multiple-output (MIMO) systems with the definition
of an extended impulse response Gramian (EIRG), and a convergence
property to balanced realization [13], [14] has been established.

Krajewskiet al.have proposed a mixed use of the results in [1] and
[8] to derive a ROM matching Markov parameters, time moments, and
impulse response energies [15]. It is based on a generalized definition
of the IRG of Sreeram and Agathoklis using successive derivatives or
integrals of the impulse response. This method is efficient but applies
only to continuous time systems.

The initial motivation for the present paper is the extension of this
approach to discrete case. A generalized impulse response Gramian
(GIRG) composed with scalar products of successive differences or
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sums of the impulse response is introduced for linear, time-invariant,
asymptotically stable, discrete SISO systems. It is related to standard
controllability, observability, and cross Gramians and is found to be
the solution to the Lyapunov equation for a particular state-space rep-
resentation. It is also shown that the characteristic polynomial can be
obtained using some impulse energies contained in the GIRG. Applica-
tion of these properties to model reduction is then investigated, and an
efficient procedure is proposed. The ROM is elaborated in two major
steps: a reduced characteristic polynomial is first computed and then
some Markov parameters or time moments are retained. The stability
and minimality properties of this ROM are studied. A numerical ex-
ample is proposed, and a comparison with well-known discrete model
reduction techniques is carried out.

II. THE DISCRETEGENERALIZED IMPULSERESPONSEGRAMIAN

In this section, we first define the GIRG and then describe properties
of this Gramian.

Let (A; b; c) be annth-order, minimal, state-space realization of
a stable, linear, discrete SISO system with impulse responseh[k] =
cAk�1b.

Definition 2.1: The(n+ 1)th-order GIRG is defined as follows:

Wq; n+1=̂ [hwq+i�1; wq+j�1i]i; j=1; ���; n+1 ;

q = �n+ 1; � � � ; 0; (1)

with w0[k] =̂h[k] and

wl+1[k] =̂wl[k + 1]� wl[k]; l 2 +;

wl�1[k] =̂ �

1

l =k

wl[l
0]; l 2 � (2)

and wherehf; gi =̂ 1

k=1
f [k]g[k] denotes the inner product of two

causal real functionsf [k]; g[k].
Successive differences and sums of the impulse response defined

in (2) have been previously used as candidates for constructing a set
of approximating functions in [16]. An interesting property of such
operators is that they preserve the original poles in thez-domain.

Some key properties of the GIRG are now considered in the fol-
lowing theorem.

Theorem 2.1:

i) Thenth-order GIRGWq; n can be written as

Wq;n = CTq WoCq

Wq;n =OqWcO
T
q

Wq;n =OqWcoCq (3)

whereWc,Wo, andWco denote, respectively, the standard con-
trollability, observability, and cross Gramian for any minimal
realization(A; b; c).

The matricesfCq; Oqg used in the above factorizations are
given by

Cq = (A� I)qb; � � � ; (A� I)q+n�1
b

and

OT
q = [c(A� I)q]T ; � � � ; [c(A� I)q+n�1]T : (4)

ii) Wq;n is the solution to the Lyapunov equation

Wq;n � Â
T
Wq;nÂ = ĉ

T
q ĉq (5)

where(Â; b̂q; ĉq) is derived from(A; b; c) by the coordinate
transformationCq.
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iii) The realization(Â; b̂q; ĉq) has the following structure [in ac-
cordance with the proposed values forq; see (1)]:

Â =

1 0 � � � 0 �an

1 1
. . .

... �an�1

0 1
. . . 0

...
...

. . .
. . . 1 �a2

0 � � � 0 1 �a1 + 1

(6)

b̂Tq = 0; � � � ; 0

�q

; 1; 0; � � � ; 0

q+n�1

ĉq = � � � ; �t2; �t1

�q

; m0

1; m
0

2; � � �

q+1

(7)

whereftigi=1; 2; ��� are the time moments of the system and
fm0

i = c(A � I)i�1bgi=1;2; ��� are given as linear combina-
tions of the Markov parametersfmigi=1;2; ���

ti = c(I � A)�ib

mi = cAi�1b

m0

i =

i�1

j=0

(�1)j
i� 1

j
mi�j (8)

and wherefaigi=1; ���; n denote the characteristic polynomial
coefficients for(A � I).

Proof: i) Starting withw0[k] = h[k], it is easily shown that, for
anyl 2 , the functionwl[k] derived using one of the transformations
in (2) can be expressed aswl[k] = c(A � I)lAk�1b = cAk�1(A �
I)lb.

Writing each inner producthwq+i�1; wq+j�1i appearing in (1) by
the(A; b; c) matrices then yields directly the relations in (3). AsA is
assumed to be asymptotically stable (kAk < 1), the matrix(A � I)
is nonsingular [19]. Thus, the existence offCq; Oqg is ensured, and
becausefA; bg is controllable,Cq is nonsingular.

ii) The observability Gramian forfÂ; ĉqg is given byCTq WoCq,
which is seen to be thenth-order GIRG forh[k] in view of (3).

iii) Let q = 0 andp(z) = n

i=0
aiz

n�i be the characteristic poly-
nomial for (A � I). It is well known that a similarity transformation
using the standard controllability matrix yields a state matrix under
companion form

C�1AC = Â0 =
0

In�1
� aaa ; C = b Ab � � � An�1b

whereaaaT = [an; � � � ; a1] andp(z) = n

i=0
aiz

n�i is the character-
istic polynomial ofA.

Then, it follows that

C�10 (A� I)C0 = (A� I)
0

=
0

In�1
� aaa

whereC0 = [b (A� I)b � � � (A� I)n�1b] andaaaT = [an; � � � ; a1].
Then, we get (6). As the differences and sums in (2) preserve the

original poles, the state matrix is the same forq = �n + 1; � � � ; 0.
The proof of (7) is straightforward and omitted.

Remark 1: As fÂ; ĉqg is observable, it follows from (5) thatWq; n

is positive definite and thelth-order GIRGWq; l is positive definite for
any l n.

The following theorem shows that the characteristic polynomial can
be extracted from the GIRG.

Theorem 2.2:Let p(z) = n

i=0
aiz

n�i (a0 = 1) be the charac-
teristic polynomial for any minimal realization(A; b; c) of the system.
Let the corresponding(n+ 1)th-order GIRG be partitioned as

Wq; n+1 =
Wq;n wwwq;n+1

wwwT
q;n+1 wq;n+1

with Wq; n thenth-order GIRG,wwwq;n+1 2 n�1, andwq;n+1 2 .
Then, the following equation holds:

aaa = � (Wq;n)
�1wwwq;n+1 (9)

whereaaaT = [an; � � � ; a1] and n

i=0
aiz

n�i = p(z + 1).
Proof: By definition,wwwq;n+1 is given as

wwwq;n+1 =

1

k=1

[wq[k]; � � � ; wq+n�1[k]]
T wq+n[k]

with wq+n[k] = cAk�1(A� I)q+nb: (10)

Letp(z) = n

i=0
aiz

n�i be the characteristic polynomial for(A�I).
Then, from the Cayley–Hamilton theorem, we get

(A� I)q+n = �

n

i=1

ai(A� I)q+n�i

and

wq+n[k] = �

n

i=1

aiwq+n�i[k]: (11)

Finally, substituting (11) into (10) yields (9).
Usefulness of these results in model-order reduction is shown in the

next section.

III. M ODEL ORDER REDUCTION

Let us consider annth-order original model described by the stable
proper transfer functionH(z) = N(z)=D(z) with a minimal realiza-
tion fx[k + 1] = Ax[k] + bu[k]; y[k] = cx[k]g.

The objective of model reduction is to find a state-space realization
f~x[k + 1] = Ar~x[k] + bru[k], ~y[k] = cr~x[k]g with ~x[k] 2 r�1

andr < n, such that~y approximatesy as close as possible for all
admissible inputs.

LetWq; r+1 and ~Wq; r+1 be the(r+1)th-order GIRG for the original
and reduced-order model, respectively, with theq parameter chosen in
the setf�r + 1; � � � ; 0g.

An efficient GIRG-based model reduction technique will be pro-
posed in the following. This technique can be seen as an extension to
discrete systems of the approach considered in [15]. It consists of an
approximation of some impulse response energies by first finding a re-
duced-order characteristic polynomial~pq(z) and then matching some
Markov parameters or time moments.

Let the GramiansWq; r+1 and ~Wq; r+1 be partitioned as

Wq; r+1 =
Wq; r wwwq; r+1

wwwT
q; r+1 wq; r+1

~Wq; r+1 =

~Wq; r ~wwwq; r+1

~wwwT
q; r+1 ~wq; r+1

: (12)

Suppose that~Wq; r matches the originalrth-order GIRG: ~Wq; r =
Wq; r .

We will now calculate anrth-degree polynomial~pq(z) such that
k~wwwq; r+1 � wwwq; r+1k

2
2 is minimized. From Theorem 2.2,~wwwq; r+1 =

�Wq; r~aaaq , where~aaaTq = [~ar; � � � ; ~a1] and~pq(z) = r

i=0
~aiz

r�i =
~pq(z + 1). Hence,~wwwq; r+1 matcheswwwq; r+1 if

~aaaq = � (Wq; r)
�1wwwq; r+1: (13)

AsWq; r is positive definite, its nonsingularity is ensured (Remark 1).

Once~aaaq has been computed, a reduced-order state matrix~̂Aq with a
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Fig. 1. Bode plots (magnitude).

form like (6) is readily obtained; it remains to choose input and output

vectors(~̂bq; ~̂cq) to get our ROM.
From Theorem 2.1, we know that therth-order GIRG for the ROM

solves the Lyapunov equation

~Wq; r �
~̂AT
q
~Wq; r

~̂Aq = ~̂cTq ~̂cq (14)

wheref~̂bq; ~̂cqg have a form like (7).

The matricesf ~̂Aq; ~̂bqg are known assuming that a characteristic
polynomial for the ROM has been computed using (13). Then, (14)
suggests that̂~cq may be chosen so that some of the time moments or
Markov-type parameters (8) of the original model are matched.

The main steps involved in our reduction procedure are then sum-
marized as follows.

Step 1) Given annth-order original model(A; b; c), choose any
q 2 f�r + 1; � � � ; 0g with r < n and then determine
the particular realization(Â; b̂q; ĉq) using the similarity
transformationCq in (4).

Step 2) Solve the Lyapunov (5) to determine thenth-order GIRG
Wq;n.

Step 3) Partition the(r + 1)th-order original GIRG as (12) and
solve (13) to obtain anrth-degree characteristic polyno-
mial.

Step 4) Form the reduced realization( ~̂Aq; ~̂bq; ~̂cq): the state ma-

trix ~̂Aq follows from Step 3) with a structure as in (6) and

f~̂bq; ~̂cqg matches the firstr entries offb̂q; ĉqg.
The condition to preserve the initial stability is given by the next the-
orem.

Theorem 3.1:Let ( ~̂Aq; ~̂bq; ~̂cq) be therth-order ROM of any asymp-
totically stable initial system(A; b; c) derived using our GIRG-based
algorithm: ~pq(z) cannot have any zeros outside the unit circle. Fur-

thermore, providedf ~̂Aq; ~̂cqg is observable, the ROM is asymptotically
stable.

Proof: From Theorem 2.1, it is known that thenth-order orig-
inal GIRGWq;n is the solution to the Lyapunov equationWq; n �

ÂTWq; nÂ = Q̂q with Q̂q = ĉTq ĉq, where (Â; b̂q; ĉq) is obtained
from any realization(A; b; c) using the similarity transformationCq
defined in (4). It is seen that therth-order original GIRG solves the
following equation:

Wq; r � ~̂AT
q Wq; r

~̂Aq = Q̂q(1 : r; 1 : r) + ~̂Q+

q (15)

with

~̂Q+

q =
0 0

0 �

� =wq; r+1 �Wq; r+1(r + 1 : r + 1; 1 : r)~aaaq (16)

where the subscripting notationM(i : j; i0 : j0) stands for the sub-
matrix with rowsi � � � j and columnsi0 � � � j0 of matrixM .
Q̂q is a positive-semidefinite matrix. Therefore,Q̂q(1 : r; 1 : r)

is positive semidefinite.

To get the required result, we shall now show that~̂Q+
q is also a pos-

itive-semidefinite matrix.
It is seen from (13) that the following equation holds:

Wq; r+1(r + 1 : r + 1; 1 : r)~aaaq = h ~wq+r; wq+ri (17)

where~wq+r[k] is thel2-optimal approximation of the functionwq+r[k]
with the setfwq+i�1[k]g:

~wq+r[k] = �

r

i=1

~aiwq+r�i[k]: (18)

Hence, we have the following expression for the last diagonal entry of
~̂Q+
q :

� = hwq+r; wq+ri � h ~wq+r; wq+ri : (19)

From the orthogonality principle, we know that the error
e[k] =̂wq+r[k] � ~wq+r[k] is orthogonal to the approximating
functions:he; wq+r�ii = 0; i = 1; � � � ; r, which implies that the
second scalar product in (19) is the energy of the approximate function

h ~wq+r; wq+ri = h ~wq+r; ~wq+ri : (20)
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Fig. 2. Bode plots (phase).

TABLE I
ERRORS FOR THEREDUCED ORDERMODELS

A known property derived from the orthogonality principle is that the
following inequality holds:

h ~wq+r; ~wq+ri < hwq+r; wq+ri : (21)

Hence, it is seen from (16) that the only nonzero entry of~̂Q+
q is pos-

itive, which implies that the right-hand side of the Lyapunov (15) is
a positive-semidefinite matrix. Then, the characteristic polynomial of
~̂Aq cannot have any zeros outside the unit circle, and, moreover, if

f ~̂Aq; ~̂cqg is observable,̂~Aq is asymptotically stable.
Remark 2: Proof of Theorem 3.1 reveals an important difference

between the discrete case and the continuous case considered in [15],
in which Gramians are defined using operatorst

1

and/ord=dt. Here,
the right-hand side of the Lyapunov (15) that solves therth-order prin-
cipal submatrice of the original GIRG is not only composed from the
parametersti or m0

i of the original realization in (7), because of the

additional term ~̂Q+
q .

The controllability of the obtained ROM is now established in the
following theorem.

Theorem 3.2:Provided that~pq(1) 6= 0, therth-order ROM( ~̂Aq ,
~̂bq, ~̂cq) is controllable.

Proof: Let ~pq(z) be the characteristic polynomial for the state

matrix ~̂Aq and~pq(z) =
r

i=0
~aiz

r�i = ~pq(z + 1). Because~̂Aq has

the same structure as in (6), it is clear that( ~̂Aq � I) is a companion
matrix. Now, it is seen that

det C ~̂Aq � I ; ~̂bq =
~a�q
r ; if r odd

(�1)�q+r+1~a�q
r ; if r even

where Cf�g denotes the standard controllability matrix. Because

Cf( ~̂Aq � I); ~̂bqg and Cf ~̂Aq; ~̂bqg have the same rank, the control-
lability matrix for our ROM realization is of full rank provided that
~ar 6= 0. Noting that~ar = ~pq(1) achieves the proof.

Finally, assumingf ~̂Aq; ~̂cqg is observable yields the asymptotic sta-
bility (see Theorem 3.1), which implies~pq(1) 6= 0 and therefore con-
trollability; in this case, the ROM is minimal.

Remarks:

1) As the ROM matches theith Markov-type parametersm0

i in (8),
it also matches theith Markov parameters.

2) It is well known that the high-frequency behavior is related to
Markov parameters and the low-frequency one is related to time
moments. Therefore, a GIRG withq � 0 is expected to give
a better approximation at high frequencies than a GIRG with
q � �r + 1. Note that the original DC-gain is preserved for
q 6= 0.

3) The present algorithm is easy to implement using a standard nu-
merical software (e.g., theMATLAB script is ten lines long and
available upon request to the authors).

IV. EXAMPLE

Numerous examples have been studied in [17] to verify the validity
of previous results.

Consider now the seventh-order transfer function of a supersonic jet
engine inlet proposed by Lalonde in [18] as shown in (22a), at the top
of the next page.

With this model, the characteristics of any order reduction technique
is clearly highlighted by comparing the ROM frequency response with
the original response, which is characterized by peaks at distinct fre-
quencies.

Using our GIRG-based technique of the previous section withq =
�1, we get the following five-order model (GIRG5) as shown in (22b),
at the top of the next page.
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h(z) =
2:0434z6 � 4:9825z5 + 6:57z4 � 5:8189z3 + 3:636z2 � 1:4105z + 0:2997

z7 � 2:46z6 + 3:433z5 � 3:333z4 + 2:5460z3 � 1:584z2 + 0:7478z� 0:2520
(22a)

~h(z) =
2:0434z4 � 3:0842z3 + 2:1696z2 � 1:4130z + 0:7100

z5 � 1:5310z4 + 1:2594z3 � 0:9770z2 + 0:6962z� 0:3241
(22b)

To measure the approximations, consider the error criteriafQ =
kek22, e[k] = y[k]� ~y[k]g, wherey[k] and~y[k] are the responses of the
original and reduced-order model, respectively. For impulse responses,
the criteria is usually normalized:Q0 = Q=khk22.

Table I compares GIRG5 with models derived through balanced real-
ization (BR5, see [13]), WIRG5 (see [2]) and least-squares with scaling
(LS5S5, see [18]).

Models BR5 and WIRG5 give the best approximations from the
point of view of the impulse response, but their step responses are not
acceptable. Model LS5S5 provides a reasonable impulse response and
a close approximation of the original step response. Model derived by
GIRG exhibits good behavior on both impulse and step responses (the
DC-gain is retained). The Bode plots of the original and reduced-order
models (WIRG5, LS5S5, GIRG5) are shown in Figs. 1 and 2. Small
reduction errors are obtained with model GIRG5 at high frequencies
and low frequencies, as well as middle frequencies.

V. CONCLUSION

A new impulse response Gramian has been introduced for linear,
time-invariant, asymptotically stable, discrete SISO systems. It is easily
obtained by solving a Lyapunov equation for a particular realization,
and it is connected to standard Gramians. It has been further shown that
it contains information about the characteristic polynomial. A model
reduction method based on these properties has been proposed. The
rth-order ROM is chosen in a set ofr solutions: the poles are first com-
puted through a minimization of al2 error criteria and then we match
some Markov parameters or time moments. This ROM cannot have any
poles outside the unit circle and is asymptotically stable and minimal
provided it is observable. This method can ensure a close approxima-
tion for a given frequency range. As shown by the numerical example,
the proposed solution compares well with those obtained with other
techniques.
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Closed-Form Control Laws for Linear
Time-Varying Systems

Ping Lu

Abstract—Closed-form control laws are developed for continuous, linear,
time-varying (LTV) systems based on approximate solutions to a receding-
horizon control problem. These control laws can be derived in the first- or
higher order closed forms. Once obtained, the control laws need no explicit
gain-scheduling or online integrations to implement. The notion of prac-
tical stability is used, and practical or uniform asymptotic stability of the
closed-loop system, depending on conditions imposed on the system, is es-
tablished.

Index Terms—Linear time-varying systems, optimal control, quadratic
programming, receding-horizon control.

I. INTRODUCTION

Relatively few methods for controller design have been available
to stabilize a linear, time-varying (LTV) system. The contrast is par-
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