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ABSTRACT ] A new procedure for derivin` a balanced realization of continuous time or discrete time
block!factorized transfer function is proposed[ This work is based on ortho`onalization processes of
input maps throu`h use of Routh:Astro�m tables and modular polynomial arithmetic[ Þ 0887 The
Franklin Institute[ Published by Elsevier Science Ltd[

I[ Introduction

Balanced realizations of linear dynamical systems have become an even more indis!
pensable tool in the model reduction domain "0Ð2# or for the synthesis of minimum
roundo} noise digital _lters "3#[ For this purpose\ many methods have been proposed
for achieving a balanced realization from a given transfer function matrix "TFM#[
Starting with a known TFM\ various methods avoiding the numerical solution of the
Lyapunov equations have been developed] some of them deal with the known poles of
the system " factorized form\ restricted or not to simple and real poles# "4Ð7#\ other
methods apply to the rational form of the Laplace or z TFM "8Ð03#[

Nevertheless\ this great diversity of various methods\ each of them dealing with each
speci_c form\ can be seen as the actual weakness of balancing algorithms impeding a
larger use in various engineering domains[ For solving those various cases\ the present
paper describes a uni_ed way which relies on orthogonal input maps[ The Input:Output
"I:O# maps have been introduced _rst by Burns and Fairman when the poles of the
system are known "7#[ However\ managing complex and multiple poles gives rise to
involved balancing algorithms[

In this paper\ we merge the approaches suggested in "7# or "09Ð02# in a uni_ed way
with the help of I:O maps\ and extend the orthogonalization procedure to solve the
frequent engineering case of block!factorized Laplace or z TFM[ This work is based
on orthogonalization processes of input maps through use of Routh:Astro�m tables
"06# and modular polynomial arithmetic[ The background concerning Input:Output
maps is _rst presented in section 1[ Use of Routh:Astro�m tables for the orthog!
onalization of input maps and extension to discrete or continuous time block!factorized
TFM is described in section 2[ Section 3 is then devoted to the computation of a
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minimal balanced state space realization[ Finally\ a numerical example is given in
section 4[

II[ Realizations and Input:Output Maps

As stated by Burns and Fairman in "7#\ I:O maps yield a worthwhile representation
of a given TFM in order to build the corresponding balanced state space realization[
These maps lead to computationally attractive methods avoiding the solution of the
Lyapunov equations[ In "7#\ an orthogonal input map is built from the modes of the
system and then\ the observability Gramian is obtained in a convenient manner which
gives the balanced realization from a simple coordinate transformation based on the
eigenvalues and eigenvectors[ However\ dealing with I:O maps in the Laplace or z
domain is more convenient for a uni_ed approach "09Ð02#[

Starting with the most general form of TFM "block!factorized TFM#\ this section
states the basic properties of I:O maps for continuous or discrete time systems[

De_nition 0] For any realization "A\B\C\D# of a continuous time impulse response
matrix H"t#\ the I:O maps L"t#\ M"t# are de_ned as]

6
L"t# � eAtB

M"t# � eA,tC,
"0#

where , designs the conjugate!transpose[

Theorem I] L"t# is an input map for the continuous time impulse response matrix H"t#
i}]

\"A\C# H"t# �CL"t#\
d
dt

L"t# �AL"t#[ "1#

In the discrete time case we have the following similar results]

De_nition 1] For any realization "A\B\C\D# of the discrete time impulse response
matrix HðnŁ\ the I:O maps LðnŁ\ MðnŁ can be de_ned as]

6
LðnŁ �An−0B\ n− 0^ Lð9Ł � 9

MðnŁ �"An−0#,C,\ n− 0^ Mð9Ł � 9
[ "2#

Theorem II] LðnŁ is an input map for the discrete time impulse response matrix HðnŁ i}]

\"A\C# HðnŁ �CLðnŁ\ Lðn¦1Ł �ALðn¦0Ł[ "3#

In the sequel\ the input maps will be assumed to have independent rows[ A such
input map is particularly attractive because the corresponding "controllable# realization
is unique[

Furthermore\ usefulness of orthogonal input maps has been pointed out for achieving
a balanced realization[
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De_nition 2] Let L"t# be a continuous time input map and LðnŁ be a discrete time input
map "having independent rows# for any continuous:discrete time impulse response
matrix[ Let Wc\ Wo be the controllability:observability Gramians for the unique cor!
responding realization "A\B\C\D# "the existence follows from the stability of the
TFM#]

Wc �ðL\LTŁ� g
�

9

L"t#L,"t# dt^ Wo �ðM\MTŁ� g
�

9

M"t#M,"t# dt "4#

"continuous time case#

Wc �ðL\LTŁ� s
�

n�9

LðnŁL, ðnŁ^ Wo �ðM\MTŁ� s
�

n�9

MðnŁM, ðnŁ "5#

"discrete time case#[
The input map L is said to be orthogonal\ and then noted L_\ if the controllability

Gramian is diagonal[ A realization will be called an input orthogonal realization\ and
then written "A_\B_\C_\D_#\ if the corresponding input map is orthogonal[

It follows that the problem of determining a balanced realization of a TFM is reduced
to a single eigenvalueÐeigenvector problem once an input orthogonal realization and
its observability Gramian Wo_ have been determined ðthe eigenvalues of the con!
trollability:observability Gramians product are the squared second!order modes "04#Ł[

In the sequel\ interest will focus on TFM given in the following block!factorized
form\ avoiding the iterative pole _nding process or the inaccurate representation of
high order polynomial coe.cients]

H"q# � ðhij"q#Ł
i� 0\ [ [ [ \ v

j� 0\ [ [ [ \ u
with hij"q# � t

m

k�0

Nij\k"q#
Dk"q#

"6#

with q� s in the continuous time case\ q� z in the discrete time case and where
"Dk"q#^ k�0\ [ [ [ \m# is a set of pairwise relatively prime polynomials\ of degree
n0\ [ [ [ \ nm respectively[

In the following theorem\ initial I:O maps are derived directly from the TFM]

Theorem III] Let the given stable continuous:discrete MIMO system be described by
its TFM]

H"q# � ðhij"q#Ł
i� 0\ [ [ [ \ v

j� 0\ [ [ [ \ u
with hij"q# � t

m

k�0

Nij\k"q#
Dk"q#

�`ij¦ s
m

k�0

Pij\k"q#
Dk"q#

"7#

where `ij $R and deg ðPij\kŁ ³deg ðDkŁ[
The derivation of the "`ij\Pij\k# can be performed in an e.cient manner as it is

pointed out in the next section[

0[ The following rational matrix is an input map for H"q#]

L9"q# �Iu &C"q#\ with C"q# � ðCT
0 "q#\ [ [ [ \CT

m"q#ŁT "8#
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where

CT
k "q# �

0
Dk"q#

ð0\ [ [ [ \ qnk−0Ł\ k� 0\ [ [ [ \m^ nk �deg ðDkŁ[

1[ The realization "A9\B9\C9\D9# corresponding to this input map is obtained as

F

G

G

j

J

G

G

f

A9 �Iu &Ac with Ac �diag ðAc0
\ [ [ [ \Acm

Ł

B9 �Iu &Bc with Bc � ðBT
c0
\ [ [ [ \BT

cm
ŁT

C9 � ðCij
c Ł

i� 0\ [ [ [ \ v

j� 0\ [ [ [ \ u
with Cij

c � ðCij
c0
\ [ [ [ \Cij

cm
Ł

D9 � ð`ijŁ
i� 0\ [ [ [ \ v

j� 0\ [ [ [ \ u

"09#

where "Ack
\Bck

\Cij
ck
# is the controllable realization for the rational fraction

Pij\k"q#:Dk"q#\ with Ack
the bottom companion matrix for Dk\ Bck

� ð9\ [ [ [ \ 9\ 0ŁT

and Cck
elements being the Pij\k coe.cients[

2[ The corresponding output map is given by the relation]

M9"q# �F9 ðIv &C"q#Ł\ with F9 � &
F00 [ [ [ Fv0

* = = [ *

F0u [ [ [ Fvu
' "00#

where Fij �diagðFij\0\ [ [ [ \Fij\mŁ\ Fij\k being the Bezout matrix for the polynomials
"Pij\k\Dk#[

Proof] It is easily seen that the matrix L9"q# in Eq[ "8# satis_es the relations in Eqns
"1# and "3# with the matrices "A9\C9# given in Eq[ "09#[ It follows from this observation
that "A9\B9\C9\D9# in Eq[ "09# is the realization for L9 in Eq[ "8#[ It has been shown in
"09\ 00# that the I:O maps for a bottom companion controllable realization of any
scalar transfer function is the Bezout matrix of its numerator and denominator[ Then
the result in Eq[ "00# is immediately derived[ Ž

Remark 0] As stated in the above theorem\ an initial input map can be obtained directly
from the TFM using the block companion realization in Eq[ "09#[ The corresponding
output map is easily achieved owing to Bezout matrices ðEq[ "00#Ł[ However\ we must
emphasize that in the present paper\ Bezoutians are not employed as a criteria for
checking the relative primeness of polynomials[

Theorem III extends I:O maps properties to the most general case of block!factorized
TFM[ These results will be used in the balancing procedure] orthogonalization of input
maps is _rst considered[

III[ Input Orthogonal Realization Using Modular Polynomial Arithmetic

It has been shown that orthogonal input maps are highly desirable when balancing
transfer function matrices] _rst results have been obtained by Burns and Fairman when
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orthogonalizing exponential functions in the time!domain "7#[ In the Laplace domain
"resp[ in the z domain# it has been pointed out that the classical Routh table "resp[
Astro�m table# gives rise to an orthogonal set of functions "09# ðresp[ "00\ 06#Ł[ Inter!
esting results based on these properties have been proposed to derive balanced real!
izations using I:O maps "09Ð02#[

In the sequel\ extended results are stated which deal with block!factorized continuous
and discrete time TFM ðEq[ "6#Ł[ For this synthetic method\ the input map is obtained
from an extended orthogonal set and the corresponding orthogonalization matrix is
computed via modular polynomial arithmetic[

Theorem IV] Let the given stable continuous:discrete time MIMO system be described
by its TFM ðEq[ "6#Ł[

In the continuous time case\ each polynomial Dk"s# gives rise to an orthogonal set
extracted from the associated Routh table]

Dk"s#\ k� 0\ [ [ [ \m: "8¼ k
l "s# �

Ak
l "s#

Dk"s#
^ l� 0\ [ [ [ \ nk# "01#

with ð8k
i \8k

j Ł�sk1
i di\ j\ where di\j is the Kronecker delta[

In the discrete time case\ each polynomial Dk"z# gives rise to an orthogonal set
extracted from the associated Astro�m table]

Dk"z#\ k� 0\ [ [ [ \m: 68k
l "z# �

Ak
l "z#

Dk"z#
^ l� 0\ [ [ [ \ nk7 "02#

with ð8k
i \8k

j Ł�sk1
i di\ j[

Let

F"q# � ðFT
0 "q#\ [ [ [ \FT

m"q#ŁT "03#

with

F

G

j

J

G

f

FT
k "q# � ð8¼ k

0"s#\ [ [ [ \8¼ k
nk
"s#Ł = t

k−0

l�0

Dl"−s#
Dl"s#

\ if q�s "k×0#

FT
k "q# � ð8k

0"z#\ [ [ [ \8k
nk
"z#Ł = t

k−0

l�0

D�l "z#
Dl"z#

\ with D�l "z# �znkDk 0
0
z1\ if q�z "k×0#

[

"04#

Then L_"q# � Iu &F"q# is an orthogonal input map for H"q#[
Proof] It follows from "07# that the functions of the column vector F"q# form an

orthogonal basis[ Using Theorems I and II\ it is easily seen that L_"q# � Iu &F"q# is
an input map for H"q#[ Then it follows that L_"q# is an orthogonal input map[ Ž

Then an orthogonal realization can be easily derived through use of an orthogonaliza!
tion matrix[
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Theorem V] The following realization "A_\B_\C_\D_# of H"q# is input orthogonal and
controllable]

F

G

j

J

G

f

A_ �"Iu &C#A9"Iu &C−0#

B_ �"Iu &C#B9

C_ �C9"Iu &C−0#

D_ �D9

[ "05#

The controllability:observability Gramians are]

8
Wc_ �I"n×u#

Wo_ �F_FT
_

with F_ �"Iu &C−T#F9"Iv &C−0#

"06#

where the orthogonalization matrix C is de_ned by]

L_"q# �"Iu &C#L9"q#[ "07#

L9"q# being the input map for the initial realization "A9\B9\C9\D9# de_ned in Theorem
I[

Proof] It is easily seen that each function of the orthogonal vector F"q# de_ned in
Eqns "03# and "04# can be expressed as a linear combination of the functions of the
initial column vector C"q# in Eq[ "8#] F"q# �CC"q# "C being the orthogonalization
matrix#[ Then\ it enables the orthogonal input map L_"q# to be written as L_"q# �
"Iu &C#L9"q#\ with L9"q# � Iu &C"q# the initial input map[ The input orthogonal
realization "A_\B_\C_\D_# is then obtained from "A9\B9\C9\D9# through the similarity
transformation "Iu &C−0#[ According to the foregoing it follows that the corresponding
controllability Gramian is Wc_ �I"n×u#[ The output map of "A_\B_\C_\D_# is given
by M_ �"Iu &C−T#M9 with M9 in Eq[ "00#\ which gives rise to the _nal expression of
the observability Gramian Wo_ in Eq[ "06#[ Ž

It is shown in the sequel that the orthogonalization matrix C can be derived in an
e.cient manner using modular polynomial arithmetic[

In the elementary case where the denominator D"q# is common to the elements hij"q#
of the TFM\ the rows of C are readily copied from the rows of the Routh:Astro�m table
built to verify the stability of D"q#[ The matrix C is then lower triangular[

Let us consider now the more general case where the least common denominator of
H"q# has the factorized form D"q# �Pm

k�0 Dk"q#"m× 0#[ It is easily seen that the
n0 �degðD0Ł _rst rows of C are derived proceeding the same way[ The other rational
"strictly proper# functions of the orthogonal vector F"q# have a factorized form ðEqns
"03# and "04#Ł[ To compute the corresponding rows in the matrix C\ rewrite each of
them using a partial fraction decomposition]

Ak
j "q#

Dk"q#
t
k−0

l�0

DÞl"q#
Dl"q#

� s
k

l�0

Pk
j\l"q#

Dl"q#
\ k� 1\ [ [ [ \m\ j� 0\ [ [ [ \ nk

where DÞl"q# �Dl"−s# in the continuous time case and DÞl"q# �znlDl"0:z# in the discrete
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time case[ The "Sk−0
t�0 nt¦j#th row of C is then immediately obtained by copying the

coe.cients of the polynomials Pk
j\l"q#[

It has been shown in "08# that use of modular polynomial arithmetic is worthwhile
to do such rational fractions decomposition since it gives rise to fast algorithms[ Then
the orthogonalization matrix can be e.ciently determined since all the computations
involved to decompose the factorized functions in Eqns "03# and "04# are done using
low degree polynomials[

Some results concerning modular polynomial arithmetic can be found in the Appen!
dix[

IV[ Balanced Realization

As a direct application of the previous results\ a method is proposed to achieve
balanced realizations of MIMO systems known by their TFM ðEq[ "6#Ł[ Due to the
orthogonalization procedures described above\ the technique applies as well for con!
tinuous or discrete time systems[

The steps involved in the algorithm are summarized in the following]

0[ Compute the numbers `ij and the polynomials Pij\k"q# in Eq[ "7# using the partial
fraction decomposition algorithm described in the Appendix[

1[ An initial controllable realization "A9\B9\C9\D9# with I:O maps L9"q#\ M9"q# is
given by Eqns "8#Ð"00#[

2[ Form an orthogonal input map L_"q# as described in Theorem IV[ The functions
extracted from the Routh:Astro�m tables will be normalized here[

3[ Compute the orthonormalization matrix C such that L_"q# �"Iu &C#L9"q# with
the aid of the partial fraction decomposition algorithm[

4[ Compute the input orthogonal realization "A_\B_\C_\D_# which is deducted
from "A9\B9\C9\D9# by the similarity transformation "Iu &C−0#[ Note that the
computation of the inverse matrix C−0 can be done in an e.cient manner using
the particular staircase form of C[ The corresponding controllability:observability
Gramians Wc_\Wo_ are given by Eq[ "06#[

5[ EigenvalueÐeigenvector decompose Wo_]

QTWo_Q�S?1\ with S?�diag ðs0\ [ [ [ \sr\ 9\ [ [ [ \ 9Ł �diag ðS\ 9Ł "08#

where the si\ i�0\ [ [ [ \ r denote the second!order modes and r the Mac!Millan
degree of H"q#[

Note that with the proposed procedure no minimality of the transfer functions
hij in Eq[ "6# is required[ Hence\ due to the numerical inaccuracies\ some si

corresponding to the unobservable part "in the case of a nonminimal input
orthogonal realization# may not be exact zeros[ Then\ r will be an estimation of
the Mac!Millan degree of the TFM[

6[ Use the Q matrix as a similarity transformation to obtain the following input
orthogonal realization "A?_\B?_\C?_\D?_# from "A_\B_\C_\D_#\ the Gramians
being W?c_ �I"n×n#\W?o_ �S?1[

7[ Reduce "A?_\B?_\C?_\D?_# to an r!order irreducible form "Aý_\Bý_\Cý_\Dý_# by eli!
minating the unobservable part[
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8[ Finally\ use of the similarity transformation S−0:1 starting from "Aý_\Bý_\Cý_\Dý_#
leads to a minimal balanced realization "Ab\Bb\Cb\Db# with controllability:
observability Gramians equal to S[

V[ Example

The present method is particularly convenient for the design of analog circuits where
the cascade of elementary circuits yields high order block!factorized transfer functions[
In the discrete time domain\ low order models and robust realizations are also welcome]
the following example\ appearing in the design of digital _lters\ has been proposed by
Mullis and Roberts "19#[ For the redactional purpose the order of the Butterworth
low!pass _lter has been limited to a low value "5#[

H"z# � 0
8[7×09−3"z¦0#1

z1−0[8530z¦9[857911 0
8[34×09−3"z¦0#1

z1−0[8001z¦9[803871 0
8[214×09−3"z¦0#1

z1−0[7708z¦9[774521[
The input map of the initial block controllable realization is given by]

L9"z# �C"z# �

K

H

H

H

H

H

H

k

0

z1−0[8530z¦9[85791
ð0 zŁT

0

z1−0[8001z¦9[80387
ð0 zŁT

0

z1−0[7708z¦9[77452
ð0 zŁT

L

H

H

H

H

H

H

l

[

The output map being M9"z# �F9C"z#\ with

F9 �

K

H

H

H

H

H

H

k

9[916172 −9[914080 9 9 9 9

−9[914080 9[911818 9 9 9 9

9 9 −9[05748 9[06535 9 9

9 9 9[06535 −9[07322 9 9

9 9 9 9 9[02400 −9[03664

9 9 9 9 −9[03664 9[05039

L

H

H

H

H

H

H

l

[

Then the required orthogonal input map is easily built from the Astro�m tables of
each order!1 denominator[

The two functions 80"z#\ 81"z#\ elements of vector F0"z# derived from the _rst
denominator\ are readily copied from the standard Astro�m table]

0 −0[8530 9[85791

9[951826 −9[951700 a1 � 9[85791

1[4936e−9[3 a0 �−9[886887

[

Thus 80"z# � "1[4936×09−3#:"z1−0[8530z¦9[85791#\ 81"z# � "9[9518z−9[9517#:
"z1−0[8530z¦9[85791# are the two _rst orthogonal functions[ Proceeding the same
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way for F1"z#\ F2"z#\ normalizing the scalar products and then using Eqns "03# and
"04#\ gives rise to the orthonormal input map]

L_"z# �

K

H

H

H

H

H

H

H

H

H

H

k

0

z1−0[8530z¦9[85791 $
9[904715

9[14976z−9[14926%
0

z1−0[8001z¦9[80387

9[85791z1−0[8530z¦0

z1−0[8530z¦9[85791 $
9[914239

9[39249z−9[39169%
0

z1−0[7708z¦9[77452

9[80387z1−0[8001z¦0

z1−0[8001z¦9[80387

9[85791z1−0[8530z¦0

z1−0[8530z¦9[85791

× $
9[918084

9[35328z−9[35236%

L

H

H

H

H

H

H

H

H

H

H

l

[

Writing each function of L_"z# as a linear combination of C"z# gives the staircase
orthogonalization matrix L_"z# �CC"z# with

C�

K

H

H

H

H

H

H

k

9[904715 9 9 9 9 9

−9[14926 9[14976 9 9 9 9

−9[923657 3[7565×09−2 9[94893 −3[7565×09−2 9 9

9[3664 −9[36764 −9[75623 9[75823 9 9

9[951561 −9[904034 −9[24443 6[1237×09−2 9[20865 6[8987×09−2

−9[65061 9[65305 4[4277 −4[4491 −4[0764 4[0863

L

H

H

H

H

H

H

l

[

Use of the similarity transformation C−0 then yields an input orthogonal realization
"A_\B_\C_\D_#\ with the following observability Gramian ðEq[ "06#Ł]

Wo_ �

K

H

H

H

H

H

H

k

9[5934 9[910176 9[12973 9[06428 9[903574 9[905967

9[910176 9[29252 −9[12103 −9[934180 −9[928941 −9[922261

9[12973 −9[12103 9[38253 9[02292 9[975101 9[962122

9[06428 −9[934180 9[02292 9[957774 9[903496 9[902526

9[903574 −9[928941 9[975101 9[903496 9[906612 9[903527

9[905967 −9[922261 9[962122 9[902526 9[903527 9[901036

L

H

H

H

H

H

H

l

[

The second!order modes si are then computed via the standard eigenvalue:
eigenvector decomposition of Wo_ ]QTWo_Q�S1\ with S�diag"si# �diag
ð9[8358\ 9[6992\ 9[21511\ 9[972297\ 9[900015\ 5[2797×09−3Ł[

This minimal balanced realization is then computed using the similarity trans!
formation S−0:1]
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Ab � 09−2×

K

H

H

H

H

H

H

k

886[06 −21[175 4[8835 −5[0234 1[2905 9[50032

21[175 877[22 39[66 −01[11 5[9114 0[4288

4[8835 −39[66 862[6 33[932 −02[03 −2[4755

5[0234 −01[11 −33[932 843[70 32[800 8[5884

1[2905 −5[9114 −02[03 −32[800 822[50 −26[312

−9[50032 0[4288 2[4755 8[5884 26[312 898[46

L

H

H

H

H

H

H

l

Bb � ð9[956718 −9[01015 −9[01367 −9[970911 −9[923241 7[8640×09−2Ł

Cb � ð9[956718 9[01015 −9[01367 9[970911 −9[923241 −7[8640×09−2Ł

Db � 7[5248×09−09[

VI[ Conclusion

An e.cient technique for deriving an input orthogonal realization from a given
block!factorized transfer function matrix has been proposed[ Extended orthogonal sets
in the Laplace or z!domain are easily obtained directly from the coe.cients of the
elementary blocks via Routh:Astro�m tables[ Use of an algorithm based on modular
polynomial arithmetic then yields an orthogonalization matrix in a convenient manner
since computations with inaccurate high degree polynomials are avoided[ An appli!
cation of the method for achieving a minimal balanced state space realization has been
shown[ Hence\ no resolution of Lyapunov equations is needed and it as well applies to
factorized or not\ continuous or discrete time systems[
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Appendix*Modular Polynomial Arithmetic

The e.ciency of this block balancing algorithm is partly due to the intensive use of the modular
polynomial arithmetic] all the computations are performed with low polynomial degrees[

The orthogonalization matrix C in Eq[ "07# is easily obtained by an iterative divide process
which has been previously suggested in "08#[ All the computations are performed in an e.cient
manner since the polynomial degrees of the Laplace or z transforms of the orthogonal functions
are reduced using modular polynomial arithmetic[

Consider the block!factorized function given as]

F"q# �
N"q#
D"q#

� t
m

k�0

Nk"q#
Dk"q#

"deg ðN Ł ¾ deg ðDŁ#

where "Dk^ k � 0\ [ [ [ \ m# is a set of pairwise relative prime polynomials[ The polynomials Pk"q#\
k � 0\ [ [ [ \m satisfying

F"q# � `¦ s
m

k�0

Pk"q#
Dk"q#

^ ` $ R\ deg ðPkŁ ³ deg ðDkŁ � nk

can be written\ using the notation of modular polynomial arithmetic
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Let us introduce U �"Pm
k�0 Nk# mod Dk and V �"Pm

k?�0\k?�k Dk?# mod Dk[ Then\ the Pk are given
by]

Pk � ð"U mod Dk#XŁ mod Dk

where X �"0:V# mod Dk is a polynomial which can be computed via the Euclidean algorithm
"05#[

It is easily seen that if deg ðNŁ ³ deg ðDŁ\ then ` � 9\ else ` can be computed as]

` � t
m

k�0

`k with `k � 6
0 if deg ðNkŁ ³ deg ðDkŁ

quot"Nk\ Dk# if deg ðNkŁ � deg ðDkŁ


