
Machine Learning
Supervised - Regression

Supervised - Classification
Unsupervised - Clustering

Machine Learning
IML

Cédric Buche

ENIB

27 août 2019

C. BUCHE - buche@enib.fr IML 1 / 120

Machine Learning
IML

Cédric Buche

ENIB

27 août 20192
0
1
9
-0
8
-2
7

IML

Page 1 :

Machine Learning
Supervised - Regression

Supervised - Classification
Unsupervised - Clustering

1 Machine Learning

2 Supervised - Regression
Linear regression
Polynomial regression

3 Supervised - Classification
Naive Bayes
Decision Tree
Logistic regression
KNN
Neural network
SVM

4 Unsupervised - Clustering
k-means
Hierarchical clustering
Distance

C. BUCHE - buche@enib.fr IML 2 / 120

1 Machine Learning

2 Supervised - Regression
Linear regression
Polynomial regression

3 Supervised - Classification
Naive Bayes
Decision Tree
Logistic regression
KNN
Neural network
SVM

4 Unsupervised - Clustering
k-means
Hierarchical clustering
Distance

2
0
1
9
-0
8
-2
7

IML
Machine Learning

Page 2 :

Machine Learning
Supervised - Regression

Supervised - Classification
Unsupervised - Clustering

1 Machine Learning

2 Supervised - Regression
Linear regression
Polynomial regression

3 Supervised - Classification
Naive Bayes
Decision Tree
Logistic regression
KNN
Neural network
SVM

4 Unsupervised - Clustering
k-means
Hierarchical clustering
Distance

C. BUCHE - buche@enib.fr IML 3 / 120

1 Machine Learning

2 Supervised - Regression
Linear regression
Polynomial regression

3 Supervised - Classification
Naive Bayes
Decision Tree
Logistic regression
KNN
Neural network
SVM

4 Unsupervised - Clustering
k-means
Hierarchical clustering
Distance

2
0
1
9
-0
8
-2
7

IML
Machine Learning

Page 3 :

Machine Learning
Supervised - Regression

Supervised - Classification
Unsupervised - Clustering

Human vs Machine

Learn from past experiences Need to be programmed
Learn from past experiences ?

C. BUCHE - buche@enib.fr IML 4 / 120

Human vs Machine

Learn from past experiences Need to be programmed
Learn from past experiences ?2

0
1
9
-0
8
-2
7

IML
Machine Learning

Human vs Machine

Page 4 :

Machine Learning
Supervised - Regression

Supervised - Classification
Unsupervised - Clustering

Human vs Machine

Machine Learning :
teaching computers to learn

to perform tasks
from past experiences

Past experiences == data

C. BUCHE - buche@enib.fr IML 5 / 120

Human vs Machine

Machine Learning :
teaching computers to learn

to perform tasks
from past experiences

Past experiences == data

2
0
1
9
-0
8
-2
7

IML
Machine Learning

Human vs Machine

Page 5 :

Machine Learning
Supervised - Regression

Supervised - Classification
Unsupervised - Clustering

Machine Learning : What is it ?

Traditional Programming

Machine Learning

C. BUCHE - buche@enib.fr IML 6 / 120

Machine Learning : What is it ?

Traditional Programming

Machine Learning

2
0
1
9
-0
8
-2
7

IML
Machine Learning

Machine Learning : What is it ?

Page 6 :

Machine Learning
Supervised - Regression

Supervised - Classification
Unsupervised - Clustering

Goals

. Classification
� Is this cancer ?
� What did you say ?

. Prediction
� which advertisement a shopper is most likely to click on ?
� which football team is going to win the Super Bowl ?

C. BUCHE - buche@enib.fr IML 7 / 120

Goals

. Classification
� Is this cancer ?
� What did you say ?

. Prediction
� which advertisement a shopper is most likely to click on ?
� which football team is going to win the Super Bowl ?

2
0
1
9
-0
8
-2
7

IML
Machine Learning

Goals

Page 7 :

Machine Learning
Supervised - Regression

Supervised - Classification
Unsupervised - Clustering

Linear regression
Polynomial regression

1 Machine Learning

2 Supervised - Regression
Linear regression
Polynomial regression

3 Supervised - Classification
Naive Bayes
Decision Tree
Logistic regression
KNN
Neural network
SVM

4 Unsupervised - Clustering
k-means
Hierarchical clustering
Distance

C. BUCHE - buche@enib.fr IML 8 / 120

1 Machine Learning

2 Supervised - Regression
Linear regression
Polynomial regression

3 Supervised - Classification
Naive Bayes
Decision Tree
Logistic regression
KNN
Neural network
SVM

4 Unsupervised - Clustering
k-means
Hierarchical clustering
Distance

2
0
1
9
-0
8
-2
7

IML
Supervised - Regression

Page 8 :

Machine Learning
Supervised - Regression

Supervised - Classification
Unsupervised - Clustering

Linear regression
Polynomial regression

C. BUCHE - buche@enib.fr IML 9 / 120

2
0
1
9
-0
8
-2
7

IML
Supervised - Regression

Linear regression

Page 9 :

Machine Learning
Supervised - Regression

Supervised - Classification
Unsupervised - Clustering

Linear regression
Polynomial regression

Example : Price of a house

C. BUCHE - buche@enib.fr IML 10 / 120

Example : Price of a house

2
0
1
9
-0
8
-2
7

IML
Supervised - Regression

Linear regression
Example : Price of a house

Page 10 :

Machine Learning
Supervised - Regression

Supervised - Classification
Unsupervised - Clustering

Linear regression
Polynomial regression

Example : Price of a house

C. BUCHE - buche@enib.fr IML 11 / 120

Example : Price of a house

2
0
1
9
-0
8
-2
7

IML
Supervised - Regression

Linear regression
Example : Price of a house

Page 11 :

Machine Learning
Supervised - Regression

Supervised - Classification
Unsupervised - Clustering

Linear regression
Polynomial regression

C. BUCHE - buche@enib.fr IML 12 / 120

2
0
1
9
-0
8
-2
7

IML
Supervised - Regression

Linear regression

Page 12 :

Machine Learning
Supervised - Regression

Supervised - Classification
Unsupervised - Clustering

Linear regression
Polynomial regression

Example : Price of a house

C. BUCHE - buche@enib.fr IML 13 / 120

Example : Price of a house

2
0
1
9
-0
8
-2
7

IML
Supervised - Regression

Linear regression
Example : Price of a house

Page 13 :

Machine Learning
Supervised - Regression

Supervised - Classification
Unsupervised - Clustering

Linear regression
Polynomial regression

Example : Price of a house

C. BUCHE - buche@enib.fr IML 14 / 120

Example : Price of a house

2
0
1
9
-0
8
-2
7

IML
Supervised - Regression

Linear regression
Example : Price of a house

Page 14 :

Machine Learning
Supervised - Regression

Supervised - Classification
Unsupervised - Clustering

Linear regression
Polynomial regression

Example : Price of a house

C. BUCHE - buche@enib.fr IML 15 / 120

Example : Price of a house

2
0
1
9
-0
8
-2
7

IML
Supervised - Regression

Linear regression
Example : Price of a house

Page 15 :

Machine Learning
Supervised - Regression

Supervised - Classification
Unsupervised - Clustering

Linear regression
Polynomial regression

Example : Price of a house

C. BUCHE - buche@enib.fr IML 16 / 120

Example : Price of a house

2
0
1
9
-0
8
-2
7

IML
Supervised - Regression

Linear regression
Example : Price of a house

Page 16 :

Machine Learning
Supervised - Regression

Supervised - Classification
Unsupervised - Clustering

Linear regression
Polynomial regression

Example : Price of a house

C. BUCHE - buche@enib.fr IML 17 / 120

Example : Price of a house

2
0
1
9
-0
8
-2
7

IML
Supervised - Regression

Linear regression
Example : Price of a house

Page 17 :

Machine Learning
Supervised - Regression

Supervised - Classification
Unsupervised - Clustering

Linear regression
Polynomial regression

Linear Regression

yi = β ∗ xi + α + εi

εi is a (hopefully small) error term representing the fact that there
are other factors not accounted for by this simple model.

C. BUCHE - buche@enib.fr IML 18 / 120

Linear Regression

yi = β ∗ xi + α + εi

εi is a (hopefully small) error term representing the fact that there
are other factors not accounted for by this simple model.

2
0
1
9
-0
8
-2
7

IML
Supervised - Regression

Linear regression
Linear Regression

Page 18 :

The representation of linear regression is an equation that describes a line that best fits the relationship between
the input variables (x) and the output variables (y), by finding specific weightings for the input variables called
coefficients (B).
For example :
y = B0 + B1 ∗ x
We will predict y given the input x and the goal of the linear regression learning algorithm is to find the values for
the coefficients B0 and B1.
Different techniques can be used to learn the linear regression model from data, such as a linear algebra solution for
ordinary least squares and gradient descent optimization.
Linear regression is a fast and simple technique and good first algorithm to try.

Machine Learning
Supervised - Regression

Supervised - Classification
Unsupervised - Clustering

Linear regression
Polynomial regression

Linear Regression

Assuming we’ve determined such an alpha and beta, then we make
predictions simply with :

def predict(alpha ,beta ,x_i):

return beta * x_i +alpha

C. BUCHE - buche@enib.fr IML 19 / 120

Linear Regression

Assuming we’ve determined such an alpha and beta, then we make
predictions simply with :

def predict(alpha ,beta ,x_i):

return beta * x_i +alpha

2
0
1
9
-0
8
-2
7

IML
Supervised - Regression

Linear regression
Linear Regression

Page 19 :

Machine Learning
Supervised - Regression

Supervised - Classification
Unsupervised - Clustering

Linear regression
Polynomial regression

Linear Regression

How do we choose α and β ?

C. BUCHE - buche@enib.fr IML 20 / 120

Linear Regression

How do we choose α and β ?

2
0
1
9
-0
8
-2
7

IML
Supervised - Regression

Linear regression
Linear Regression

Page 20 :

Machine Learning
Supervised - Regression

Supervised - Classification
Unsupervised - Clustering

Linear regression
Polynomial regression

Linear Regression

How do we choose α and β ?

C. BUCHE - buche@enib.fr IML 21 / 120

Linear Regression

How do we choose α and β ?

2
0
1
9
-0
8
-2
7

IML
Supervised - Regression

Linear regression
Linear Regression

Page 21 :

Machine Learning
Supervised - Regression

Supervised - Classification
Unsupervised - Clustering

Linear regression
Polynomial regression

Linear Regression

Any choice of α and β gives us a predicted output for each input
xi . Since we know the actual output yi we can compute the error
for each pair :

def error (alpha , beta , x_i , y_i):

return y_i - predict (alpha , beta , x_i)

C. BUCHE - buche@enib.fr IML 22 / 120

Linear Regression

Any choice of α and β gives us a predicted output for each input
xi . Since we know the actual output yi we can compute the error
for each pair :

def error (alpha , beta , x_i , y_i):

return y_i - predict (alpha , beta , x_i)

2
0
1
9
-0
8
-2
7

IML
Supervised - Regression

Linear regression
Linear Regression

Page 22 :

Machine Learning
Supervised - Regression

Supervised - Classification
Unsupervised - Clustering

Linear regression
Polynomial regression

Linear Regression

We’d really like to know is the total error over the entire data set.
But we don’t want to just add the errors — if the prediction for x1

is too high and the prediction for x2 is too low, the errors may just
cancel out.
So instead we add up the squared errors :

def sum_of_squared_errors (alpha , beta , x , y):

return sum (error (alpha , beta , x_i , y_i) ** 2 for x_i , y_i in

zip (x , y))

C. BUCHE - buche@enib.fr IML 23 / 120

Linear Regression

We’d really like to know is the total error over the entire data set.
But we don’t want to just add the errors — if the prediction for x1

is too high and the prediction for x2 is too low, the errors may just
cancel out.
So instead we add up the squared errors :

def sum_of_squared_errors (alpha , beta , x , y):

return sum (error (alpha , beta , x_i , y_i) ** 2 for x_i , y_i in

zip (x , y))

2
0
1
9
-0
8
-2
7

IML
Supervised - Regression

Linear regression
Linear Regression

Page 23 :

Machine Learning
Supervised - Regression

Supervised - Classification
Unsupervised - Clustering

Linear regression
Polynomial regression

Linear Regression

The least squares solution is to choose the α and β that make
sum of squared errors as small as possible. Using calculus (or
tedious algebra), the error-minimizing alpha and beta are given by :

def least_squares_fit (x , y):

beta = correlation (x , y) * standard_deviation (y) /

standard_deviation (x)

alpha = mean (y) - beta * mean (x)

return alpha , beta

C. BUCHE - buche@enib.fr IML 24 / 120

Linear Regression

The least squares solution is to choose the α and β that make
sum of squared errors as small as possible. Using calculus (or
tedious algebra), the error-minimizing alpha and beta are given by :

def least_squares_fit (x , y):

beta = correlation (x , y) * standard_deviation (y) /

standard_deviation (x)

alpha = mean (y) - beta * mean (x)

return alpha , beta

2
0
1
9
-0
8
-2
7

IML
Supervised - Regression

Linear regression
Linear Regression

Page 24 :

Let’s think about why this might be a reasonable solution.
The choice of alpha simply says that when we see the average value of the independent variable x , we predict the
average value of the dependent variable y .
The choice of beta means that when the input value increases by standard deviation(x), the prediction increases by
correlation(x, y) *standard deviation(y).
In the case when x and y are perfectly correlated, a one standard deviation increase in x results in a one-standard-
deviation-of-y increase in the prediction.
When they’re perfectly anticorrelated, the increase in x results in a decrease in the prediction. And when the correlation
is zero, beta is zero, which means that changes in x don’t affect the prediction at all.

Machine Learning
Supervised - Regression

Supervised - Classification
Unsupervised - Clustering

Linear regression
Polynomial regression

Linear Regression

C. BUCHE - buche@enib.fr IML 25 / 120

Linear Regression

2
0
1
9
-0
8
-2
7

IML
Supervised - Regression

Linear regression
Linear Regression

Page 25 :

Machine Learning
Supervised - Regression

Supervised - Classification
Unsupervised - Clustering

Linear regression
Polynomial regression

Linear Regression

C. BUCHE - buche@enib.fr IML 26 / 120

Linear Regression

2
0
1
9
-0
8
-2
7

IML
Supervised - Regression

Linear regression
Linear Regression

Page 26 :

Machine Learning
Supervised - Regression

Supervised - Classification
Unsupervised - Clustering

Linear regression
Polynomial regression

Linear Regression

Of course, we need a better way to figure out how well we’ve fit
the data than staring at the graph. A common measure is the
coefficient of determination (or R-squared), which measures the
fraction of the total variation in the dependent variable that is
captured by the model :

def total_sum_of_squares (y):

return sum (v ** 2 for v in de_mean (y))

def r_squared (alpha , beta , x , y):

return 1.0 - (sum_of_squared_errors (alpha , beta , x , y) /

total_sum_of_squares (y))

C. BUCHE - buche@enib.fr IML 27 / 120

Linear Regression

Of course, we need a better way to figure out how well we’ve fit
the data than staring at the graph. A common measure is the
coefficient of determination (or R-squared), which measures the
fraction of the total variation in the dependent variable that is
captured by the model :

def total_sum_of_squares (y):

return sum (v ** 2 for v in de_mean (y))

def r_squared (alpha , beta , x , y):

return 1.0 - (sum_of_squared_errors (alpha , beta , x , y) /

total_sum_of_squares (y))2
0
1
9
-0
8
-2
7

IML
Supervised - Regression

Linear regression
Linear Regression

Page 27 :

Now, we chose the alpha and beta that minimized the sum of the squared prediction errors. One linear model we
could have chosen is “always predict mean(y) ” (corresponding to alpha = mean(y) and beta = 0), whose sum of
squared errors exactly equals its total sum of squares. This means an R-squared of zero, which indicates a model
that (obviously, in this case) performs no better than just predicting the mean. Clearly, the least squares model must
be at least as good as that one, which means that the sum of the squared errors is at most the total sum of squares,
which means that the R- squared must be at least zero. And the sum of squared errors must be at least 0, which
means that the R-squared can be at most 1.

Machine Learning
Supervised - Regression

Supervised - Classification
Unsupervised - Clustering

Linear regression
Polynomial regression

Linear Regression

C. BUCHE - buche@enib.fr IML 28 / 120

Linear Regression

2
0
1
9
-0
8
-2
7

IML
Supervised - Regression

Linear regression
Linear Regression

Page 28 :

Machine Learning
Supervised - Regression

Supervised - Classification
Unsupervised - Clustering

Linear regression
Polynomial regression

Linear Regression

C. BUCHE - buche@enib.fr IML 29 / 120

Linear Regression

2
0
1
9
-0
8
-2
7

IML
Supervised - Regression

Linear regression
Linear Regression

Page 29 :

Machine Learning
Supervised - Regression

Supervised - Classification
Unsupervised - Clustering

Linear regression
Polynomial regression

Linear Regression

C. BUCHE - buche@enib.fr IML 30 / 120

Linear Regression

2
0
1
9
-0
8
-2
7

IML
Supervised - Regression

Linear regression
Linear Regression

Page 30 :

Machine Learning
Supervised - Regression

Supervised - Classification
Unsupervised - Clustering

Linear regression
Polynomial regression

Linear Regression

C. BUCHE - buche@enib.fr IML 31 / 120

Linear Regression

2
0
1
9
-0
8
-2
7

IML
Supervised - Regression

Linear regression
Linear Regression

Page 31 :

Machine Learning
Supervised - Regression

Supervised - Classification
Unsupervised - Clustering

Linear regression
Polynomial regression

Linear Regression

If we write theta = [alpha, beta] , then we can also solve this using
gradient descent :

def squared_error (x_i , y_i , theta):

alpha , beta = theta

return error (alpha , beta , x_i , y_i) ** 2

def squared_error_gradient (x_i , y_i , theta):

alpha , beta = theta

return [- 2 * error (alpha , beta , x_i , y_i), # alpha partial deriv

- 2 * error (alpha , beta , x_i , y_i) * x_i] # beta partial

deriv

choose random value to start

random.seed (0)

theta = [random . random (), random . random ()]

alpha , beta = minimize_stochastic (squared_error , squared_error_gradient ,

entry , entry2 , theta , 0.0001)

print alpha , beta

C. BUCHE - buche@enib.fr IML 32 / 120

Linear Regression

If we write theta = [alpha, beta] , then we can also solve this using
gradient descent :

def squared_error (x_i , y_i , theta):

alpha , beta = theta

return error (alpha , beta , x_i , y_i) ** 2

def squared_error_gradient (x_i , y_i , theta):

alpha , beta = theta

return [- 2 * error (alpha , beta , x_i , y_i), # alpha partial deriv

- 2 * error (alpha , beta , x_i , y_i) * x_i] # beta partial

deriv

choose random value to start

random.seed (0)

theta = [random . random (), random . random ()]

alpha , beta = minimize_stochastic (squared_error , squared_error_gradient ,

entry , entry2 , theta , 0.0001)

print alpha , beta

2
0
1
9
-0
8
-2
7

IML
Supervised - Regression

Linear regression
Linear Regression

Page 32 :

Machine Learning
Supervised - Regression

Supervised - Classification
Unsupervised - Clustering

Linear regression
Polynomial regression

Linear Regression

Demo !

C. BUCHE - buche@enib.fr IML 33 / 120

Linear Regression

Demo !

2
0
1
9
-0
8
-2
7

IML
Supervised - Regression

Linear regression
Linear Regression

Page 33 :

list daily minutes that show many minutes per day each user spends on a website, and you’ve ordered it so that its
elements correspond to the elements of num friends list. We’d like to investigate the relationship between these two
metrics.

Machine Learning
Supervised - Regression

Supervised - Classification
Unsupervised - Clustering

Linear regression
Polynomial regression

Polynomial Regression

C. BUCHE - buche@enib.fr IML 34 / 120

Polynomial Regression

2
0
1
9
-0
8
-2
7

IML
Supervised - Regression

Polynomial regression
Polynomial Regression

Page 34 :

Machine Learning
Supervised - Regression

Supervised - Classification
Unsupervised - Clustering

Linear regression
Polynomial regression

Polynomial Regression

C. BUCHE - buche@enib.fr IML 35 / 120

Polynomial Regression

2
0
1
9
-0
8
-2
7

IML
Supervised - Regression

Polynomial regression
Polynomial Regression

Page 35 :

Machine Learning
Supervised - Regression

Supervised - Classification
Unsupervised - Clustering

Naive Bayes
Decision Tree
Logistic regression
KNN
Neural network
SVM

1 Machine Learning

2 Supervised - Regression
Linear regression
Polynomial regression

3 Supervised - Classification
Naive Bayes
Decision Tree
Logistic regression
KNN
Neural network
SVM

4 Unsupervised - Clustering
k-means
Hierarchical clustering
Distance

C. BUCHE - buche@enib.fr IML 36 / 120

1 Machine Learning

2 Supervised - Regression
Linear regression
Polynomial regression

3 Supervised - Classification
Naive Bayes
Decision Tree
Logistic regression
KNN
Neural network
SVM

4 Unsupervised - Clustering
k-means
Hierarchical clustering
Distance

2
0
1
9
-0
8
-2
7

IML
Supervised - Classification

Page 36 :

Machine Learning
Supervised - Regression

Supervised - Classification
Unsupervised - Clustering

Naive Bayes
Decision Tree
Logistic regression
KNN
Neural network
SVM

Example : Spam Detector

C. BUCHE - buche@enib.fr IML 37 / 120

Example : Spam Detector

2
0
1
9
-0
8
-2
7

IML
Supervised - Classification

Naive Bayes
Example : Spam Detector

Page 37 :

Machine Learning
Supervised - Regression

Supervised - Classification
Unsupervised - Clustering

Naive Bayes
Decision Tree
Logistic regression
KNN
Neural network
SVM

Example : Spam Detector

C. BUCHE - buche@enib.fr IML 38 / 120

Example : Spam Detector

2
0
1
9
-0
8
-2
7

IML
Supervised - Classification

Naive Bayes
Example : Spam Detector

Page 38 :

Machine Learning
Supervised - Regression

Supervised - Classification
Unsupervised - Clustering

Naive Bayes
Decision Tree
Logistic regression
KNN
Neural network
SVM

Example : Spam Detector

C. BUCHE - buche@enib.fr IML 39 / 120

Example : Spam Detector

2
0
1
9
-0
8
-2
7

IML
Supervised - Classification

Naive Bayes
Example : Spam Detector

Page 39 :

Machine Learning
Supervised - Regression

Supervised - Classification
Unsupervised - Clustering

Naive Bayes
Decision Tree
Logistic regression
KNN
Neural network
SVM

Example : Spam Detector

C. BUCHE - buche@enib.fr IML 40 / 120

Example : Spam Detector

2
0
1
9
-0
8
-2
7

IML
Supervised - Classification

Naive Bayes
Example : Spam Detector

Page 40 :

Machine Learning
Supervised - Regression

Supervised - Classification
Unsupervised - Clustering

Naive Bayes
Decision Tree
Logistic regression
KNN
Neural network
SVM

Example : Spam Detector

C. BUCHE - buche@enib.fr IML 41 / 120

Example : Spam Detector

2
0
1
9
-0
8
-2
7

IML
Supervised - Classification

Naive Bayes
Example : Spam Detector

Page 41 :

Machine Learning
Supervised - Regression

Supervised - Classification
Unsupervised - Clustering

Naive Bayes
Decision Tree
Logistic regression
KNN
Neural network
SVM

Example : Spam Detector

C. BUCHE - buche@enib.fr IML 42 / 120

Example : Spam Detector

2
0
1
9
-0
8
-2
7

IML
Supervised - Classification

Naive Bayes
Example : Spam Detector

Page 42 :

Machine Learning
Supervised - Regression

Supervised - Classification
Unsupervised - Clustering

Naive Bayes
Decision Tree
Logistic regression
KNN
Neural network
SVM

Example : Spam Detector

C. BUCHE - buche@enib.fr IML 43 / 120

Example : Spam Detector

2
0
1
9
-0
8
-2
7

IML
Supervised - Classification

Naive Bayes
Example : Spam Detector

Page 43 :

Machine Learning
Supervised - Regression

Supervised - Classification
Unsupervised - Clustering

Naive Bayes
Decision Tree
Logistic regression
KNN
Neural network
SVM

Example : Spam Detector

C. BUCHE - buche@enib.fr IML 44 / 120

Example : Spam Detector

2
0
1
9
-0
8
-2
7

IML
Supervised - Classification

Naive Bayes
Example : Spam Detector

Page 44 :

Machine Learning
Supervised - Regression

Supervised - Classification
Unsupervised - Clustering

Naive Bayes
Decision Tree
Logistic regression
KNN
Neural network
SVM

Example : Spam Detector

C. BUCHE - buche@enib.fr IML 45 / 120

Example : Spam Detector

2
0
1
9
-0
8
-2
7

IML
Supervised - Classification

Naive Bayes
Example : Spam Detector

Page 45 :

Naive Bayes is a simple but surprisingly powerful algorithm for predictive modeling.
The model is comprised of two types of probabilities that can be calculated directly from your training data :

1. The probability of each class.

2. The conditional probability for each class given each x value.

Once calculated, the probability model can be used to make predictions for new data using Bayes Theorem.
When your data is real-valued it is common to assume a Gaussian distribution (bell curve) so that you can easily
estimate these probabilities.
Naive Bayes is called naive because it assumes that each input variable is independent. This is a strong assumption
and unrealistic for real data, nevertheless, the technique is very effective on a large range of complex problems.

Machine Learning
Supervised - Regression

Supervised - Classification
Unsupervised - Clustering

Naive Bayes
Decision Tree
Logistic regression
KNN
Neural network
SVM

Naive Bayes

. Let S be the event “the message is spam”

. a vocabulary of many words w1, ...wn

. P(Xi |S) : probability that a spam message contains the ith
word

. The key to Naive Bayes is making the (big) assumption that
the presences (or absences) of each word are independent of
one another, conditional on a message being spam or not.

. P(X1 = x1, ...Xn = xn|S) = P(X1 = x1|S) ∗ ...P(Xn = xn|S)

. Bayes’s Theorem :
P(S |X = x) = P(X = x |S)/[P(X = x |S) + P(X = x |¬S)]

C. BUCHE - buche@enib.fr IML 46 / 120

Naive Bayes

. Let S be the event “the message is spam”

. a vocabulary of many words w1, ...wn

. P(Xi |S) : probability that a spam message contains the ith
word

. The key to Naive Bayes is making the (big) assumption that
the presences (or absences) of each word are independent of
one another, conditional on a message being spam or not.

. P(X1 = x1, ...Xn = xn|S) = P(X1 = x1|S) ∗ ...P(Xn = xn|S)

. Bayes’s Theorem :
P(S |X = x) = P(X = x |S)/[P(X = x |S) + P(X = x |¬S)]

2
0
1
9
-0
8
-2
7

IML
Supervised - Classification

Naive Bayes
Naive Bayes

Page 46 :

Machine Learning
Supervised - Regression

Supervised - Classification
Unsupervised - Clustering

Naive Bayes
Decision Tree
Logistic regression
KNN
Neural network
SVM

Naive Bayes

. we usually compute p1 ∗ ... ∗ pn as the equivalent :
exp(log(p − 1) + ...+ log(pn))

. Imagine that in our training set the vocabulary word “data”
only occurs in nonspam messages. Then we’d estimate
P(”data”|S) = 0

. P(Xi |S) =
(k + numberSpamsContainingwi)/(2k + numberSpams)

C. BUCHE - buche@enib.fr IML 47 / 120

Naive Bayes

. we usually compute p1 ∗ ... ∗ pn as the equivalent :
exp(log(p − 1) + ...+ log(pn))

. Imagine that in our training set the vocabulary word “data”
only occurs in nonspam messages. Then we’d estimate
P(”data”|S) = 0

. P(Xi |S) =
(k + numberSpamsContainingwi)/(2k + numberSpams)

2
0
1
9
-0
8
-2
7

IML
Supervised - Classification

Naive Bayes
Naive Bayes

Page 47 :

Machine Learning
Supervised - Regression

Supervised - Classification
Unsupervised - Clustering

Naive Bayes
Decision Tree
Logistic regression
KNN
Neural network
SVM

Naive Bayes

def tokenize(message):

message = message.lower () # convert to lowercase

all_words = re.findall ("[a-z0 -9’]+" , message) # extract the words

return set (all_words) # remove duplicates

def count_words (training_set):

"""training set consists of pairs (message , is_spam)"""

counts = defaultdict (lambda : [0 , 0])

for message , is_spam in training_set :

for word in tokenize (message):

counts [word][0 if is_spam else 1] += 1

return counts

C. BUCHE - buche@enib.fr IML 48 / 120

Naive Bayes

def tokenize(message):

message = message.lower () # convert to lowercase

all_words = re.findall ("[a-z0 -9’]+" , message) # extract the words

return set (all_words) # remove duplicates

def count_words (training_set):

"""training set consists of pairs (message , is_spam)"""

counts = defaultdict (lambda : [0 , 0])

for message , is_spam in training_set :

for word in tokenize (message):

counts [word][0 if is_spam else 1] += 1

return counts2
0
1
9
-0
8
-2
7

IML
Supervised - Classification

Naive Bayes
Naive Bayes

Page 48 :

Machine Learning
Supervised - Regression

Supervised - Classification
Unsupervised - Clustering

Naive Bayes
Decision Tree
Logistic regression
KNN
Neural network
SVM

Naive Bayes

def word_probabilities (counts , total_spams , total_non_spams , k = 0.5):

turn the word_counts into a list of triplets

w, p(w | spam) and p(w | ~spam)

return [(w , (spam + k) / (total_spams + 2 * k),

(non_spam + k) / (total_non_spams + 2 * k)) for w ,

(spam , non_spam) in counts.iteritems ()]

C. BUCHE - buche@enib.fr IML 49 / 120

Naive Bayes

def word_probabilities (counts , total_spams , total_non_spams , k = 0.5):

turn the word_counts into a list of triplets

w, p(w | spam) and p(w | ~spam)

return [(w , (spam + k) / (total_spams + 2 * k),

(non_spam + k) / (total_non_spams + 2 * k)) for w ,

(spam , non_spam) in counts.iteritems ()]

2
0
1
9
-0
8
-2
7

IML
Supervised - Classification

Naive Bayes
Naive Bayes

Page 49 :

Machine Learning
Supervised - Regression

Supervised - Classification
Unsupervised - Clustering

Naive Bayes
Decision Tree
Logistic regression
KNN
Neural network
SVM

Naive Bayes

def spam_probability (word_probs , message):

message_words = tokenize (message) log_prob_if_spam =

log_prob_if_not_spam = 0.0

iterate through each word in our vocabulary

for word , prob_if_spam , prob_if_not_spam in word_probs :

if *word* appears in the message ,

add the log probability of seeing it

if word in message_words :

log_prob_if_spam += math . log (prob_if_spam)

log_prob_if_not_spam += math . log (prob_if_not_spam)

if *word* does not appear in the message

add the log probability of _not_ seeing it

which is log(1 - probability of seeing it)

else :

log_prob_if_spam += math . log (1.0 - prob_if_spam)

log_prob_if_not_spam += math . log (1.0 - prob_if_not_spam)

prob_if_spam = math . exp (log_prob_if_spam)

prob_if_not_spam = math . exp (log_prob_if_not_spam)

return prob_if_spam / (prob_if_spam + prob_if_not_spam)

C. BUCHE - buche@enib.fr IML 50 / 120

Naive Bayes

def spam_probability (word_probs , message):

message_words = tokenize (message) log_prob_if_spam =

log_prob_if_not_spam = 0.0

iterate through each word in our vocabulary

for word , prob_if_spam , prob_if_not_spam in word_probs :

if *word* appears in the message ,

add the log probability of seeing it

if word in message_words :

log_prob_if_spam += math . log (prob_if_spam)

log_prob_if_not_spam += math . log (prob_if_not_spam)

if *word* does not appear in the message

add the log probability of _not_ seeing it

which is log(1 - probability of seeing it)

else :

log_prob_if_spam += math . log (1.0 - prob_if_spam)

log_prob_if_not_spam += math . log (1.0 - prob_if_not_spam)

prob_if_spam = math . exp (log_prob_if_spam)

prob_if_not_spam = math . exp (log_prob_if_not_spam)

return prob_if_spam / (prob_if_spam + prob_if_not_spam)

2
0
1
9
-0
8
-2
7

IML
Supervised - Classification

Naive Bayes
Naive Bayes

Page 50 :

Machine Learning
Supervised - Regression

Supervised - Classification
Unsupervised - Clustering

Naive Bayes
Decision Tree
Logistic regression
KNN
Neural network
SVM

Naive Bayes

class NaiveBayesClassifier :

def __init__ (self , k = 0.5):

self . k = k

self . word_probs = []

def train (self , training_set):

count spam and non -spam messages

num_spams = len ([is_spam for message , is_spam in training_set if

is_spam])

num_non_spams = len (training_set) - num_spams

run training data through our "pipeline"

word_counts = count_words (training_set)

self.word_probs = word_probabilities (word_counts , num_spams ,

num_non_spams , self.k)

def classify (self , message):

return spam_probability (self . word_probs , message)

C. BUCHE - buche@enib.fr IML 51 / 120

Naive Bayes

class NaiveBayesClassifier :

def __init__ (self , k = 0.5):

self . k = k

self . word_probs = []

def train (self , training_set):

count spam and non -spam messages

num_spams = len ([is_spam for message , is_spam in training_set if

is_spam])

num_non_spams = len (training_set) - num_spams

run training data through our "pipeline"

word_counts = count_words (training_set)

self.word_probs = word_probabilities (word_counts , num_spams ,

num_non_spams , self.k)

def classify (self , message):

return spam_probability (self . word_probs , message)

2
0
1
9
-0
8
-2
7

IML
Supervised - Classification

Naive Bayes
Naive Bayes

Page 51 :

Machine Learning
Supervised - Regression

Supervised - Classification
Unsupervised - Clustering

Naive Bayes
Decision Tree
Logistic regression
KNN
Neural network
SVM

Naive Bayes

import glob , re

modify the path with wherever you have put the files

path =

data = []

glob.glob returns every filename that matches the wildcarded path

for fn in glob.glob (path):

is_spam = "ham" not in fn

with open (fn , ’r’) as file :

for line in file :

if line.startswith("Subject:"):

remove the leading "Subject: " and keep what is left

subject = re.sub(r"^Subject: " , "" , line).strip ()

data.append ((subject , is_spam))

C. BUCHE - buche@enib.fr IML 52 / 120

Naive Bayes

import glob , re

modify the path with wherever you have put the files

path =

data = []

glob.glob returns every filename that matches the wildcarded path

for fn in glob.glob (path):

is_spam = "ham" not in fn

with open (fn , ’r’) as file :

for line in file :

if line.startswith("Subject:"):

remove the leading "Subject: " and keep what is left

subject = re.sub(r"^Subject: " , "" , line).strip ()

data.append ((subject , is_spam))2
0
1
9
-0
8
-2
7

IML
Supervised - Classification

Naive Bayes
Naive Bayes

Page 52 :

Machine Learning
Supervised - Regression

Supervised - Classification
Unsupervised - Clustering

Naive Bayes
Decision Tree
Logistic regression
KNN
Neural network
SVM

Naive Bayes

random.seed (0) # just so you get the same answers as me

train_data , test_data = split_data (data , 0.75)

classifier = NaiveBayesClassifier ()

classifier.train (train_data)

triplets (subject , actual is_spam , predicted spam probability)

classified = [(subject , is_spam , classifier . classify (subject)) for

subject , is_spam in test_data]

assume that spam_probability > 0.5 corresponds to spam prediction

and count the combinations of (actual is_spam , predicted is_spam)

counts = Counter ((is_spam , spam_probability > 0.5) for _ , is_spam ,

spam_probability in classified)

C. BUCHE - buche@enib.fr IML 53 / 120

Naive Bayes

random.seed (0) # just so you get the same answers as me

train_data , test_data = split_data (data , 0.75)

classifier = NaiveBayesClassifier ()

classifier.train (train_data)

triplets (subject , actual is_spam , predicted spam probability)

classified = [(subject , is_spam , classifier . classify (subject)) for

subject , is_spam in test_data]

assume that spam_probability > 0.5 corresponds to spam prediction

and count the combinations of (actual is_spam , predicted is_spam)

counts = Counter ((is_spam , spam_probability > 0.5) for _ , is_spam ,

spam_probability in classified)

2
0
1
9
-0
8
-2
7

IML
Supervised - Classification

Naive Bayes
Naive Bayes

Page 53 :

Machine Learning
Supervised - Regression

Supervised - Classification
Unsupervised - Clustering

Naive Bayes
Decision Tree
Logistic regression
KNN
Neural network
SVM

Naive Bayes

Demo !

C. BUCHE - buche@enib.fr IML 54 / 120

Naive Bayes

Demo !

2
0
1
9
-0
8
-2
7

IML
Supervised - Classification

Naive Bayes
Naive Bayes

Page 54 :

three folders : spam, easy ham, and hard ham. Each folder contains many emails, each contained in a singlefile. To
keep things really simple, we will just look at the subject lines of each email.

Machine Learning
Supervised - Regression

Supervised - Classification
Unsupervised - Clustering

Naive Bayes
Decision Tree
Logistic regression
KNN
Neural network
SVM

Example : Recommending apps

Gender Age App

F 15 Facebook

F 25 Instagram

M 32 Snapchat

F 40 Instagram

M 12 Facebook

M 14 Facebook
Which feature (Gender or Age) is the more decisive to predict what
app will the users download ?
Age < 20 : Facebook
Age > 20 :?
Age > 20 : F : Instagram M : Snapchat
Decision Tree

C. BUCHE - buche@enib.fr IML 55 / 120

Example : Recommending apps

Gender Age App

F 15 Facebook

F 25 Instagram

M 32 Snapchat

F 40 Instagram

M 12 Facebook

M 14 Facebook
Which feature (Gender or Age) is the more decisive to predict what
app will the users download ?
Age < 20 : Facebook
Age > 20 :?
Age > 20 : F : Instagram M : Snapchat
Decision Tree

2
0
1
9
-0
8
-2
7

IML
Supervised - Classification

Decision Tree
Example : Recommending apps

Page 55 :

Decision Trees are an important type of algorithm for predictive modeling machine learning.
The representation of the decision tree model is a binary tree. This is your binary tree from algorithms and data
structures, nothing too fancy. Each node represents a single input variable (x) and a split point on that variable
(assuming the variable is numeric).
The leaf nodes of the tree contain an output variable (y) which is used to make a prediction. Predictions are made
by walking the splits of the tree until arriving at a leaf node and output the class value at that leaf node.
Trees are fast to learn and very fast for making predictions. They are also often accurate for a broad range of problems
and do not require any special preparation for your data.
Decision trees have a high variance and can yield more accurate predictions when used in an ensemble.
Given how closely decision trees can fit themselves to their training data, it’s not surprising that they have a tendency
to overfit. One way of avoiding this is a technique called random forests , in which we build multiple decision trees
and let them vote on how to classify inputs.

Machine Learning
Supervised - Regression

Supervised - Classification
Unsupervised - Clustering

Naive Bayes
Decision Tree
Logistic regression
KNN
Neural network
SVM

Example : Acceptance at a University

C. BUCHE - buche@enib.fr IML 56 / 120

Example : Acceptance at a University

2
0
1
9
-0
8
-2
7

IML
Supervised - Classification

Logistic regression
Example : Acceptance at a University

Page 56 :

Machine Learning
Supervised - Regression

Supervised - Classification
Unsupervised - Clustering

Naive Bayes
Decision Tree
Logistic regression
KNN
Neural network
SVM

Example : Acceptance at a University

C. BUCHE - buche@enib.fr IML 57 / 120

Example : Acceptance at a University

2
0
1
9
-0
8
-2
7

IML
Supervised - Classification

Logistic regression
Example : Acceptance at a University

Page 57 :

Machine Learning
Supervised - Regression

Supervised - Classification
Unsupervised - Clustering

Naive Bayes
Decision Tree
Logistic regression
KNN
Neural network
SVM

Example : Acceptance at a University

C. BUCHE - buche@enib.fr IML 58 / 120

Example : Acceptance at a University

2
0
1
9
-0
8
-2
7

IML
Supervised - Classification

Logistic regression
Example : Acceptance at a University

Page 58 :

Machine Learning
Supervised - Regression

Supervised - Classification
Unsupervised - Clustering

Naive Bayes
Decision Tree
Logistic regression
KNN
Neural network
SVM

Example : Acceptance at a University

C. BUCHE - buche@enib.fr IML 59 / 120

Example : Acceptance at a University

2
0
1
9
-0
8
-2
7

IML
Supervised - Classification

Logistic regression
Example : Acceptance at a University

Page 59 :

Machine Learning
Supervised - Regression

Supervised - Classification
Unsupervised - Clustering

Naive Bayes
Decision Tree
Logistic regression
KNN
Neural network
SVM

Example : Acceptance at a University

C. BUCHE - buche@enib.fr IML 60 / 120

Example : Acceptance at a University

2
0
1
9
-0
8
-2
7

IML
Supervised - Classification

Logistic regression
Example : Acceptance at a University

Page 60 :

Machine Learning
Supervised - Regression

Supervised - Classification
Unsupervised - Clustering

Naive Bayes
Decision Tree
Logistic regression
KNN
Neural network
SVM

Example : Acceptance at a University

C. BUCHE - buche@enib.fr IML 61 / 120

Example : Acceptance at a University

2
0
1
9
-0
8
-2
7

IML
Supervised - Classification

Logistic regression
Example : Acceptance at a University

Page 61 :

Machine Learning
Supervised - Regression

Supervised - Classification
Unsupervised - Clustering

Naive Bayes
Decision Tree
Logistic regression
KNN
Neural network
SVM

Example : Acceptance at a University

C. BUCHE - buche@enib.fr IML 62 / 120

Example : Acceptance at a University

2
0
1
9
-0
8
-2
7

IML
Supervised - Classification

Logistic regression
Example : Acceptance at a University

Page 62 :

Machine Learning
Supervised - Regression

Supervised - Classification
Unsupervised - Clustering

Naive Bayes
Decision Tree
Logistic regression
KNN
Neural network
SVM

Example : Acceptance at a University

C. BUCHE - buche@enib.fr IML 63 / 120

Example : Acceptance at a University

2
0
1
9
-0
8
-2
7

IML
Supervised - Classification

Logistic regression
Example : Acceptance at a University

Page 63 :

Machine Learning
Supervised - Regression

Supervised - Classification
Unsupervised - Clustering

Naive Bayes
Decision Tree
Logistic regression
KNN
Neural network
SVM

Example : Acceptance at a University

C. BUCHE - buche@enib.fr IML 64 / 120

Example : Acceptance at a University

2
0
1
9
-0
8
-2
7

IML
Supervised - Classification

Logistic regression
Example : Acceptance at a University

Page 64 :

Machine Learning
Supervised - Regression

Supervised - Classification
Unsupervised - Clustering

Naive Bayes
Decision Tree
Logistic regression
KNN
Neural network
SVM

Example : Acceptance at a University

C. BUCHE - buche@enib.fr IML 65 / 120

Example : Acceptance at a University

2
0
1
9
-0
8
-2
7

IML
Supervised - Classification

Logistic regression
Example : Acceptance at a University

Page 65 :

Machine Learning
Supervised - Regression

Supervised - Classification
Unsupervised - Clustering

Naive Bayes
Decision Tree
Logistic regression
KNN
Neural network
SVM

Example : Acceptance at a University

C. BUCHE - buche@enib.fr IML 66 / 120

Example : Acceptance at a University

2
0
1
9
-0
8
-2
7

IML
Supervised - Classification

Logistic regression
Example : Acceptance at a University

Page 66 :

Machine Learning
Supervised - Regression

Supervised - Classification
Unsupervised - Clustering

Naive Bayes
Decision Tree
Logistic regression
KNN
Neural network
SVM

Example : Acceptance at a University

C. BUCHE - buche@enib.fr IML 67 / 120

Example : Acceptance at a University

2
0
1
9
-0
8
-2
7

IML
Supervised - Classification

Logistic regression
Example : Acceptance at a University

Page 67 :

Machine Learning
Supervised - Regression

Supervised - Classification
Unsupervised - Clustering

Naive Bayes
Decision Tree
Logistic regression
KNN
Neural network
SVM

Example : Acceptance at a University

C. BUCHE - buche@enib.fr IML 68 / 120

Example : Acceptance at a University

2
0
1
9
-0
8
-2
7

IML
Supervised - Classification

Logistic regression
Example : Acceptance at a University

Page 68 :

Machine Learning
Supervised - Regression

Supervised - Classification
Unsupervised - Clustering

Naive Bayes
Decision Tree
Logistic regression
KNN
Neural network
SVM

Example : Acceptance at a University

C. BUCHE - buche@enib.fr IML 69 / 120

Example : Acceptance at a University

2
0
1
9
-0
8
-2
7

IML
Supervised - Classification

Logistic regression
Example : Acceptance at a University

Page 69 :

Machine Learning
Supervised - Regression

Supervised - Classification
Unsupervised - Clustering

Naive Bayes
Decision Tree
Logistic regression
KNN
Neural network
SVM

Example : Acceptance at a University

C. BUCHE - buche@enib.fr IML 70 / 120

Example : Acceptance at a University

2
0
1
9
-0
8
-2
7

IML
Supervised - Classification

Logistic regression
Example : Acceptance at a University

Page 70 :

Logistic regression is another technique borrowed by machine learning from the field of statistics. It is the go-to
method for binary classification problems (problems with two class values).
Logistic regression is like linear regression in that the goal is to find the values for the coefficients that weight each
input variable.
Unlike linear regression, the prediction for the output is transformed using a non-linear function called the logistic
function.
The logistic function looks like a big S and will transform any value into the range 0 to 1. This is useful because we
can apply a rule to the output of the logistic function to snap values to 0 and 1 (e.g. IF less than 0.5 then output
1) and predict a class value.
Because of the way that the model is learned, the predictions made by logistic regression can also be used as the
probability of a given data instance belonging to class 0 or class 1. This can be useful for problems where you need
to give more rationale for a prediction.
Like linear regression, logistic regression does work better when you remove attributes that are unrelated to the
output variable as well as attributes that are very similar (correlated) to each other.
It’s a fast model to learn and effective on binary classification problems.

Machine Learning
Supervised - Regression

Supervised - Classification
Unsupervised - Clustering

Naive Bayes
Decision Tree
Logistic regression
KNN
Neural network
SVM

Logistic regression

. We have an anonymized data set of about 200 users,
containing each user’s salary, her years of experience as a data
scientist, and whether she paid for a premium account=

C. BUCHE - buche@enib.fr IML 71 / 120

Logistic regression

. We have an anonymized data set of about 200 users,
containing each user’s salary, her years of experience as a data
scientist, and whether she paid for a premium account=

2
0
1
9
-0
8
-2
7

IML
Supervised - Classification

Logistic regression
Logistic regression

Page 71 :

Machine Learning
Supervised - Regression

Supervised - Classification
Unsupervised - Clustering

Naive Bayes
Decision Tree
Logistic regression
KNN
Neural network
SVM

Logistic regression

. As is usual with categorical variables, we represent the
dependent variable as either 0 (no premium account) or 1
(premium account).

. our data is in a matrix where each row is a list [experience,
salary, paid account]

x = [[1] + row [: 2] for row in data] # each element is [1,

experience , salary]

y = [row [2] for row in data] # each element is paid_account

C. BUCHE - buche@enib.fr IML 72 / 120

Logistic regression

. As is usual with categorical variables, we represent the
dependent variable as either 0 (no premium account) or 1
(premium account).

. our data is in a matrix where each row is a list [experience,
salary, paid account]

x = [[1] + row [: 2] for row in data] # each element is [1,

experience , salary]

y = [row [2] for row in data] # each element is paid_account2
0
1
9
-0
8
-2
7

IML
Supervised - Classification

Logistic regression
Logistic regression

Page 72 :

Machine Learning
Supervised - Regression

Supervised - Classification
Unsupervised - Clustering

Naive Bayes
Decision Tree
Logistic regression
KNN
Neural network
SVM

Logistic regression

. linear regression :
paidAccount = β0 + β1 ∗ experience + β2 ∗ salary + ε

rescaled_x = rescale (x)

beta = estimate_beta (rescaled_x , y) # [0.26, 0.43, -0.43]

predictions = [predict (x_i , beta) for x_i in rescaled_x]

plt.scatter (predictions , y)

plt.xlabel ("predicted")

plt.ylabel ("actual")

plt.show ()

C. BUCHE - buche@enib.fr IML 73 / 120

Logistic regression

. linear regression :
paidAccount = β0 + β1 ∗ experience + β2 ∗ salary + ε

rescaled_x = rescale (x)

beta = estimate_beta (rescaled_x , y) # [0.26, 0.43, -0.43]

predictions = [predict (x_i , beta) for x_i in rescaled_x]

plt.scatter (predictions , y)

plt.xlabel ("predicted")

plt.ylabel ("actual")

plt.show ()

2
0
1
9
-0
8
-2
7

IML
Supervised - Classification

Logistic regression
Logistic regression

Page 73 :

Machine Learning
Supervised - Regression

Supervised - Classification
Unsupervised - Clustering

Naive Bayes
Decision Tree
Logistic regression
KNN
Neural network
SVM

Logistic regression

. result (linear regression) :

C. BUCHE - buche@enib.fr IML 74 / 120

Logistic regression

. result (linear regression) :

2
0
1
9
-0
8
-2
7

IML
Supervised - Classification

Logistic regression
Logistic regression

Page 74 :

Machine Learning
Supervised - Regression

Supervised - Classification
Unsupervised - Clustering

Naive Bayes
Decision Tree
Logistic regression
KNN
Neural network
SVM

Logistic regression

. logistic regression (logistic function) :

def logistic (x):

return 1.0 / (1 + math . exp (- x))

C. BUCHE - buche@enib.fr IML 75 / 120

Logistic regression

. logistic regression (logistic function) :

def logistic (x):

return 1.0 / (1 + math . exp (- x))

2
0
1
9
-0
8
-2
7

IML
Supervised - Classification

Logistic regression
Logistic regression

Page 75 :

Machine Learning
Supervised - Regression

Supervised - Classification
Unsupervised - Clustering

Naive Bayes
Decision Tree
Logistic regression
KNN
Neural network
SVM

Logistic regression

. derivative is given by :

def logistic_prime (x):

return logistic (x) * (1 - logistic (x))

yi = f (xiβ) + εi

f is the logistic funtion

C. BUCHE - buche@enib.fr IML 76 / 120

Logistic regression

. derivative is given by :

def logistic_prime (x):

return logistic (x) * (1 - logistic (x))

yi = f (xiβ) + εi

f is the logistic funtion

2
0
1
9
-0
8
-2
7

IML
Supervised - Classification

Logistic regression
Logistic regression

Page 76 :

Machine Learning
Supervised - Regression

Supervised - Classification
Unsupervised - Clustering

Naive Bayes
Decision Tree
Logistic regression
KNN
Neural network
SVM

Logistic regression

def logistic_log_likelihood_i (x_i , y_i , beta):

if y_i == 1 :

return math . log (logistic (dot (x_i , beta)))

else :

return math . log (1 - logistic (dot (x_i , beta)))

def logistic_log_likelihood (x , y , beta):

return sum (logistic_log_likelihood_i (x_i , y_i , beta) for x_i ,

y_i in zip (x , y))

def logistic_log_gradient_i (x_i , y_i , beta):

the gradient of the log likelihood corresponding to the ith data point

return [logistic_log_partial_ij (x_i , y_i , beta , j) for j , _ in

enumerate (beta)]

def logistic_log_gradient (x , y , beta):

return reduce (vector_add , [logistic_log_gradient_i (x_i , y_i ,

beta) for x_i , y_i in zip (x , y)])

C. BUCHE - buche@enib.fr IML 77 / 120

Logistic regression

def logistic_log_likelihood_i (x_i , y_i , beta):

if y_i == 1 :

return math . log (logistic (dot (x_i , beta)))

else :

return math . log (1 - logistic (dot (x_i , beta)))

def logistic_log_likelihood (x , y , beta):

return sum (logistic_log_likelihood_i (x_i , y_i , beta) for x_i ,

y_i in zip (x , y))

def logistic_log_gradient_i (x_i , y_i , beta):

the gradient of the log likelihood corresponding to the ith data point

return [logistic_log_partial_ij (x_i , y_i , beta , j) for j , _ in

enumerate (beta)]

def logistic_log_gradient (x , y , beta):

return reduce (vector_add , [logistic_log_gradient_i (x_i , y_i ,

beta) for x_i , y_i in zip (x , y)])2
0
1
9
-0
8
-2
7

IML
Supervised - Classification

Logistic regression
Logistic regression

Page 77 :

Machine Learning
Supervised - Regression

Supervised - Classification
Unsupervised - Clustering

Naive Bayes
Decision Tree
Logistic regression
KNN
Neural network
SVM

Logistic regression

random . seed (0)

x_train , x_test , y_train , y_test = train_test_split (rescaled_x , y , 0.33)

want to maximize log likelihood on the training data

fn = partial (logistic_log_likelihood , x_train , y_train)

gradient_fn = partial (logistic_log_gradient , x_train , y_train)

pick a random starting point

beta_0 = [random . random () for _ in range (3)]

and maximize using gradient descent

beta_hat = maximize_batch (fn , gradient_fn , beta_0)

C. BUCHE - buche@enib.fr IML 78 / 120

Logistic regression

random . seed (0)

x_train , x_test , y_train , y_test = train_test_split (rescaled_x , y , 0.33)

want to maximize log likelihood on the training data

fn = partial (logistic_log_likelihood , x_train , y_train)

gradient_fn = partial (logistic_log_gradient , x_train , y_train)

pick a random starting point

beta_0 = [random . random () for _ in range (3)]

and maximize using gradient descent

beta_hat = maximize_batch (fn , gradient_fn , beta_0)

2
0
1
9
-0
8
-2
7

IML
Supervised - Classification

Logistic regression
Logistic regression

Page 78 :

Machine Learning
Supervised - Regression

Supervised - Classification
Unsupervised - Clustering

Naive Bayes
Decision Tree
Logistic regression
KNN
Neural network
SVM

Naive Bayes

Demo !

C. BUCHE - buche@enib.fr IML 79 / 120

Naive Bayes

Demo !

2
0
1
9
-0
8
-2
7

IML
Supervised - Classification

Logistic regression
Naive Bayes

Page 79 :

the problem of trying to predict which users paid for premium accounts.

Machine Learning
Supervised - Regression

Supervised - Classification
Unsupervised - Clustering

Naive Bayes
Decision Tree
Logistic regression
KNN
Neural network
SVM

Model : KNN

Examples

. predict how I’m going to vote in the next presidential election.
If you know nothing else about me, one approach is to look at
how my neighbors are planning to vote. Living in Seattle, my
neighbors are planning to vote for the Democratic candidate,
which suggests that “Democratic candidate” is a good guess
for me as well.

. you know more about me : my age, my income, how many
kids I have ... To the extent my behavior is influenced by
those things, looking just at my neighbors who are close to
me among all those dimensions seems likely to be an even
better predictor than looking at all my neighbors. This is the
idea behind nearest neighbors classification.

C. BUCHE - buche@enib.fr IML 80 / 120

Model : KNN

Examples

. predict how I’m going to vote in the next presidential election.
If you know nothing else about me, one approach is to look at
how my neighbors are planning to vote. Living in Seattle, my
neighbors are planning to vote for the Democratic candidate,
which suggests that “Democratic candidate” is a good guess
for me as well.

. you know more about me : my age, my income, how many
kids I have ... To the extent my behavior is influenced by
those things, looking just at my neighbors who are close to
me among all those dimensions seems likely to be an even
better predictor than looking at all my neighbors. This is the
idea behind nearest neighbors classification.

2
0
1
9
-0
8
-2
7

IML
Supervised - Classification

KNN
Model : KNN

Page 80 :

Machine Learning
Supervised - Regression

Supervised - Classification
Unsupervised - Clustering

Naive Bayes
Decision Tree
Logistic regression
KNN
Neural network
SVM

Model : KNN

Requirements

. Some notion of distance

. An assumption that points that are close to one another are
similar

the prediction for each new point depends only on the handful of
points closest to it.

C. BUCHE - buche@enib.fr IML 81 / 120

Model : KNN

Requirements

. Some notion of distance

. An assumption that points that are close to one another are
similar

the prediction for each new point depends only on the handful of
points closest to it.

2
0
1
9
-0
8
-2
7

IML
Supervised - Classification

KNN
Model : KNN

Page 81 :

Machine Learning
Supervised - Regression

Supervised - Classification
Unsupervised - Clustering

Naive Bayes
Decision Tree
Logistic regression
KNN
Neural network
SVM

Model : KNN

C. BUCHE - buche@enib.fr IML 82 / 120

Model : KNN

2
0
1
9
-0
8
-2
7

IML
Supervised - Classification

KNN
Model : KNN

Page 82 :

The test sample (green circle) should be classified either to the first class of blue squares or to the second class of
red triangles.
If k = 3 (solid line circle) it is assigned to the second class because there are 2 triangles and only 1 square inside the
inner circle.
If k = 5 (dashed line circle) it is assigned to the first class (3 squares vs. 2 triangles inside the outer circle).

Machine Learning
Supervised - Regression

Supervised - Classification
Unsupervised - Clustering

Naive Bayes
Decision Tree
Logistic regression
KNN
Neural network
SVM

Model : KNN

. classify some new data point : find the k nearest labeled
points and let them vote on the new output.

. need a function that counts votes : Reduce k until we find a
unique winner.

def majority_vote(labels):

assumes that labels are ordered from nearest to farthest

vote_counts = Counter(labels)

winner , winner_count = vote_counts.most_common (1)[0]

num_winners = len([count for count in vote_counts.values () if count ==

winner_count])

if num_winners == 1:

return winner # unique winner , so return it

else:

return majority_vote(labels [: -1]) # try again without the farthest

C. BUCHE - buche@enib.fr IML 83 / 120

Model : KNN

. classify some new data point : find the k nearest labeled
points and let them vote on the new output.

. need a function that counts votes : Reduce k until we find a
unique winner.

def majority_vote(labels):

assumes that labels are ordered from nearest to farthest

vote_counts = Counter(labels)

winner , winner_count = vote_counts.most_common (1)[0]

num_winners = len([count for count in vote_counts.values () if count ==

winner_count])

if num_winners == 1:

return winner # unique winner , so return it

else:

return majority_vote(labels [: -1]) # try again without the farthest

2
0
1
9
-0
8
-2
7

IML
Supervised - Classification

KNN
Model : KNN

Page 83 :

Machine Learning
Supervised - Regression

Supervised - Classification
Unsupervised - Clustering

Naive Bayes
Decision Tree
Logistic regression
KNN
Neural network
SVM

Model : KNN

def knn_classify(k, labeled_points , new_point):

each labeled point should be a pair (point , label)

order the labeled points from nearest to farthest

by_distance = sorted(labeled_points , key=lambda (point , _): distance(point ,

new_point))

find the labels for the k closest

k_nearest_labels = [label for _, label in by_distance [:k]]

and let them vote

return majority_vote(k_nearest_labels)

C. BUCHE - buche@enib.fr IML 84 / 120

Model : KNN

def knn_classify(k, labeled_points , new_point):

each labeled point should be a pair (point , label)

order the labeled points from nearest to farthest

by_distance = sorted(labeled_points , key=lambda (point , _): distance(point ,

new_point))

find the labels for the k closest

k_nearest_labels = [label for _, label in by_distance [:k]]

and let them vote

return majority_vote(k_nearest_labels)

2
0
1
9
-0
8
-2
7

IML
Supervised - Classification

KNN
Model : KNN

Page 84 :

Machine Learning
Supervised - Regression

Supervised - Classification
Unsupervised - Clustering

Naive Bayes
Decision Tree
Logistic regression
KNN
Neural network
SVM

Example : Favorite Programming Languages

each entry is ([longitude , latitude], favorite_language)

cities = [([-122.3 , 47.53] , "Python"), # Seattle

([-96.85, 32.85] , "Java"), # Austin

([-89.33, 43.13] , "R"), # Madison

... and so on

]

C. BUCHE - buche@enib.fr IML 85 / 120

Example : Favorite Programming Languages

each entry is ([longitude , latitude], favorite_language)

cities = [([-122.3 , 47.53] , "Python"), # Seattle

([-96.85, 32.85] , "Java"), # Austin

([-89.33, 43.13] , "R"), # Madison

... and so on

]

2
0
1
9
-0
8
-2
7

IML
Supervised - Classification

KNN
Example : Favorite Programming Languages

Page 85 :

Machine Learning
Supervised - Regression

Supervised - Classification
Unsupervised - Clustering

Naive Bayes
Decision Tree
Logistic regression
KNN
Neural network
SVM

Example : Favorite Programming Languages

Plotting the data

key is language , value is pair (longitudes , latitudes)

plots = { "Java" : ([], []), "Python" : ([], []), "R" : ([], []) }

we want each language to have a different marker and color

markers = { "Java" : "o", "Python" : "s", "R" : "^" }

colors = { "Java" : "r", "Python" : "b", "R" : "g" }

for (longitude , latitude), language in cities:

plots[language][0]. append(longitude)

plots[language][1]. append(latitude)

create a scatter series for each language

for language , (x, y) in plots.iteritems ():

plt.scatter(x, y, color=colors[language], marker=markers[language],

label=language , zorder =10)

plot_state_borders(plt) # pretend we have a function that does this

plt.legend(loc=0) # let matplotlib choose the location

plt.axis ([-130,-60,20 ,55]) # set the axes

plt.title("Favorite Programming Languages")

plt.show()

C. BUCHE - buche@enib.fr IML 86 / 120

Example : Favorite Programming Languages

Plotting the data

key is language , value is pair (longitudes , latitudes)

plots = { "Java" : ([], []), "Python" : ([], []), "R" : ([], []) }

we want each language to have a different marker and color

markers = { "Java" : "o", "Python" : "s", "R" : "^" }

colors = { "Java" : "r", "Python" : "b", "R" : "g" }

for (longitude , latitude), language in cities:

plots[language][0]. append(longitude)

plots[language][1]. append(latitude)

create a scatter series for each language

for language , (x, y) in plots.iteritems ():

plt.scatter(x, y, color=colors[language], marker=markers[language],

label=language , zorder =10)

plot_state_borders(plt) # pretend we have a function that does this

plt.legend(loc=0) # let matplotlib choose the location

plt.axis ([-130,-60,20 ,55]) # set the axes

plt.title("Favorite Programming Languages")

plt.show()

2
0
1
9
-0
8
-2
7

IML
Supervised - Classification

KNN
Example : Favorite Programming Languages

Page 86 :

Machine Learning
Supervised - Regression

Supervised - Classification
Unsupervised - Clustering

Naive Bayes
Decision Tree
Logistic regression
KNN
Neural network
SVM

Result

C. BUCHE - buche@enib.fr IML 87 / 120

Result

2
0
1
9
-0
8
-2
7

IML
Supervised - Classification

KNN
Result

Page 87 :

Machine Learning
Supervised - Regression

Supervised - Classification
Unsupervised - Clustering

Naive Bayes
Decision Tree
Logistic regression
KNN
Neural network
SVM

Example : Favorite Programming Languages

Try several different values for k

for k in [1, 3, 5, 7]:

num_correct = 0

for city in cities:

location , actual_language = city

other_cities = [other_city

for other_city in cities

if other_city != city]

predicted_language = knn_classify(k, other_cities , location)

if predicted_language == actual_language:

num_correct += 1

print k, "neighbor[s]:", num_correct , "correct out of", len(cities)

C. BUCHE - buche@enib.fr IML 88 / 120

Example : Favorite Programming Languages

Try several different values for k

for k in [1, 3, 5, 7]:

num_correct = 0

for city in cities:

location , actual_language = city

other_cities = [other_city

for other_city in cities

if other_city != city]

predicted_language = knn_classify(k, other_cities , location)

if predicted_language == actual_language:

num_correct += 1

print k, "neighbor[s]:", num_correct , "correct out of", len(cities)2
0
1
9
-0
8
-2
7

IML
Supervised - Classification

KNN
Example : Favorite Programming Languages

Page 88 :

1 neighbor[s] : 40 correct out of 75 3 neighbor[s] : 44 correct out of 75 5 neighbor[s] : 41 correct out of 75 7

neighbor[s] : 35 correct out of 75

Machine Learning
Supervised - Regression

Supervised - Classification
Unsupervised - Clustering

Naive Bayes
Decision Tree
Logistic regression
KNN
Neural network
SVM

Example : Favorite Programming Languages

plots = { "Java" : ([], []), "Python" : ([], []), "R" : ([], []) }

k = 1 # or 3, or 5, or ...

for longitude in range (-130, -60):

for latitude in range (20, 55):

predicted_language = knn_classify(k, cities , [longitude , latitude])

plots[predicted_language][0]. append(longitude)

plots[predicted_language][1]. append(latitude)

C. BUCHE - buche@enib.fr IML 89 / 120

Example : Favorite Programming Languages

plots = { "Java" : ([], []), "Python" : ([], []), "R" : ([], []) }

k = 1 # or 3, or 5, or ...

for longitude in range (-130, -60):

for latitude in range (20, 55):

predicted_language = knn_classify(k, cities , [longitude , latitude])

plots[predicted_language][0]. append(longitude)

plots[predicted_language][1]. append(latitude)

2
0
1
9
-0
8
-2
7

IML
Supervised - Classification

KNN
Example : Favorite Programming Languages

Page 89 :

Machine Learning
Supervised - Regression

Supervised - Classification
Unsupervised - Clustering

Naive Bayes
Decision Tree
Logistic regression
KNN
Neural network
SVM

Result

k = 1

C. BUCHE - buche@enib.fr IML 90 / 120

Result

k = 1

2
0
1
9
-0
8
-2
7

IML
Supervised - Classification

KNN
Result

Page 90 :

Machine Learning
Supervised - Regression

Supervised - Classification
Unsupervised - Clustering

Naive Bayes
Decision Tree
Logistic regression
KNN
Neural network
SVM

Result

k = 3

C. BUCHE - buche@enib.fr IML 91 / 120

Result

k = 3

2
0
1
9
-0
8
-2
7

IML
Supervised - Classification

KNN
Result

Page 91 :

Machine Learning
Supervised - Regression

Supervised - Classification
Unsupervised - Clustering

Naive Bayes
Decision Tree
Logistic regression
KNN
Neural network
SVM

KNN

Demo !

C. BUCHE - buche@enib.fr IML 92 / 120

KNN

Demo !

2
0
1
9
-0
8
-2
7

IML
Supervised - Classification

KNN
KNN

Page 92 :

Machine Learning
Supervised - Regression

Supervised - Classification
Unsupervised - Clustering

Naive Bayes
Decision Tree
Logistic regression
KNN
Neural network
SVM

C. BUCHE - buche@enib.fr IML 93 / 120

2
0
1
9
-0
8
-2
7

IML
Supervised - Classification

Neural network

Page 93 :

What is a parametric machine learning algorithm and how is it different from a nonparametric machine learning
algorithm ?
Assumptions can greatly simplify the learning process, but can also limit what can be learned. Algorithms that simplify
the function to a known form are called parametric machine learning algorithms.
The algorithms involve two steps :
Select a form for the function. Learn the coefficients for the function from the training data.
Some examples of parametric machine learning algorithms are Linear Regression and Logistic Regression.
Algorithms that do not make strong assumptions about the form of the mapping function are called nonparametric
machine learning algorithms. By not making assumptions, they are free to learn any functional form from the training
data.
Non-parametric methods are often more flexible, achieve better accuracy but require a lot more data and training
time.
Examples of nonparametric algorithms include Support Vector Machines, Neural Networks and Decision Trees.

Machine Learning
Supervised - Regression

Supervised - Classification
Unsupervised - Clustering

Naive Bayes
Decision Tree
Logistic regression
KNN
Neural network
SVM

SVM

C. BUCHE - buche@enib.fr IML 94 / 120

SVM

2
0
1
9
-0
8
-2
7

IML
Supervised - Classification

SVM
SVM

Page 94 :

Machine Learning
Supervised - Regression

Supervised - Classification
Unsupervised - Clustering

Naive Bayes
Decision Tree
Logistic regression
KNN
Neural network
SVM

SVM

C. BUCHE - buche@enib.fr IML 95 / 120

SVM

2
0
1
9
-0
8
-2
7

IML
Supervised - Classification

SVM
SVM

Page 95 :

Machine Learning
Supervised - Regression

Supervised - Classification
Unsupervised - Clustering

Naive Bayes
Decision Tree
Logistic regression
KNN
Neural network
SVM

SVM

C. BUCHE - buche@enib.fr IML 96 / 120

SVM

2
0
1
9
-0
8
-2
7

IML
Supervised - Classification

SVM
SVM

Page 96 :

Machine Learning
Supervised - Regression

Supervised - Classification
Unsupervised - Clustering

Naive Bayes
Decision Tree
Logistic regression
KNN
Neural network
SVM

SVM

C. BUCHE - buche@enib.fr IML 97 / 120

SVM

2
0
1
9
-0
8
-2
7

IML
Supervised - Classification

SVM
SVM

Page 97 :

Machine Learning
Supervised - Regression

Supervised - Classification
Unsupervised - Clustering

Naive Bayes
Decision Tree
Logistic regression
KNN
Neural network
SVM

SVM

C. BUCHE - buche@enib.fr IML 98 / 120

SVM

2
0
1
9
-0
8
-2
7

IML
Supervised - Classification

SVM
SVM

Page 98 :

Machine Learning
Supervised - Regression

Supervised - Classification
Unsupervised - Clustering

Naive Bayes
Decision Tree
Logistic regression
KNN
Neural network
SVM

SVM : kernel trick

C. BUCHE - buche@enib.fr IML 99 / 120

SVM : kernel trick

2
0
1
9
-0
8
-2
7

IML
Supervised - Classification

SVM
SVM : kernel trick

Page 99 :

Support Vector Machines are perhaps one of the most popular and talked about machine learning algorithms.
A hyperplane is a line that splits the input variable space. In SVM, a hyperplane is selected to best separate the
points in the input variable space by their class, either class 0 or class 1.
In two-dimensions, you can visualize this as a line and let’s assume that all of our input points can be completely
separated by this line.
The SVM learning algorithm finds the coefficients that results in the best separation of the classes by the hyperplane.
The distance between the hyperplane and the closest data points is referred to as the margin. The best or optimal
hyperplane that can separate the two classes is the line that has the largest margin.
Only these points are relevant in defining the hyperplane and in the construction of the classifier.
These points are called the support vectors. They support or define the hyperplane.
In practice, an optimization algorithm is used to find the values for the coefficients that maximizes the margin.

Machine Learning
Supervised - Regression

Supervised - Classification
Unsupervised - Clustering

k-means
Hierarchical clustering
Distance

1 Machine Learning

2 Supervised - Regression
Linear regression
Polynomial regression

3 Supervised - Classification
Naive Bayes
Decision Tree
Logistic regression
KNN
Neural network
SVM

4 Unsupervised - Clustering
k-means
Hierarchical clustering
Distance

C. BUCHE - buche@enib.fr IML 100 / 120

1 Machine Learning

2 Supervised - Regression
Linear regression
Polynomial regression

3 Supervised - Classification
Naive Bayes
Decision Tree
Logistic regression
KNN
Neural network
SVM

4 Unsupervised - Clustering
k-means
Hierarchical clustering
Distance

2
0
1
9
-0
8
-2
7

IML
Unsupervised - Clustering

Page 100 :

Machine Learning
Supervised - Regression

Supervised - Classification
Unsupervised - Clustering

k-means
Hierarchical clustering
Distance

Unsupervised learning

Learning mode

. supervised learning : set of labeled data for making predictions
about new, unlabeled data.

. unsupervised learning : no label at all

. Whenever you look at some source of data, the data will
somehow form clusters.

C. BUCHE - buche@enib.fr IML 101 / 120

Unsupervised learning

Learning mode

. supervised learning : set of labeled data for making predictions
about new, unlabeled data.

. unsupervised learning : no label at all

. Whenever you look at some source of data, the data will
somehow form clusters.

2
0
1
9
-0
8
-2
7

IML
Unsupervised - Clustering

Unsupervised learning

Page 101 :

Machine Learning
Supervised - Regression

Supervised - Classification
Unsupervised - Clustering

k-means
Hierarchical clustering
Distance

Idea

Examples

. A data set showing where millionaires live probably has
clusters in places like Beverly Hills and Manhattan.

. A data set showing how many hours people work each week
probably has a cluster around 40.

. A data set of demographics of registered voters likely forms a
variety of clusters (e.g., ”soccer moms”, ”bored retirees” ...)

the clusters won’t label themselves. You’ll have to do that by
looking at the data underlying each one.

C. BUCHE - buche@enib.fr IML 102 / 120

Idea

Examples

. A data set showing where millionaires live probably has
clusters in places like Beverly Hills and Manhattan.

. A data set showing how many hours people work each week
probably has a cluster around 40.

. A data set of demographics of registered voters likely forms a
variety of clusters (e.g., ”soccer moms”, ”bored retirees” ...)

the clusters won’t label themselves. You’ll have to do that by
looking at the data underlying each one.2

0
1
9
-0
8
-2
7

IML
Unsupervised - Clustering

Idea

Page 102 :

Machine Learning
Supervised - Regression

Supervised - Classification
Unsupervised - Clustering

k-means
Hierarchical clustering
Distance

Model : k-means

1 Start with a set of k-means, which are points in d-dimensional
space.

2 Assign each point to the mean to which it is closest.

3 If no point’s assignment has changed, stop and keep the
clusters.

4 If some point’s assignment has changed, recompute the means
and return to step 2.

C. BUCHE - buche@enib.fr IML 103 / 120

Model : k-means

1 Start with a set of k-means, which are points in d-dimensional
space.

2 Assign each point to the mean to which it is closest.

3 If no point’s assignment has changed, stop and keep the
clusters.

4 If some point’s assignment has changed, recompute the means
and return to step 2.

2
0
1
9
-0
8
-2
7

IML
Unsupervised - Clustering

k-means
Model : k-means

Page 103 :

Machine Learning
Supervised - Regression

Supervised - Classification
Unsupervised - Clustering

k-means
Hierarchical clustering
Distance

Example : pizza

C. BUCHE - buche@enib.fr IML 104 / 120

Example : pizza

2
0
1
9
-0
8
-2
7

IML
Unsupervised - Clustering

k-means
Example : pizza

Page 104 :

Machine Learning
Supervised - Regression

Supervised - Classification
Unsupervised - Clustering

k-means
Hierarchical clustering
Distance

Example : pizza

C. BUCHE - buche@enib.fr IML 105 / 120

Example : pizza

2
0
1
9
-0
8
-2
7

IML
Unsupervised - Clustering

k-means
Example : pizza

Page 105 :

Machine Learning
Supervised - Regression

Supervised - Classification
Unsupervised - Clustering

k-means
Hierarchical clustering
Distance

Example : pizza

C. BUCHE - buche@enib.fr IML 106 / 120

Example : pizza

2
0
1
9
-0
8
-2
7

IML
Unsupervised - Clustering

k-means
Example : pizza

Page 106 :

Machine Learning
Supervised - Regression

Supervised - Classification
Unsupervised - Clustering

k-means
Hierarchical clustering
Distance

Example : pizza

C. BUCHE - buche@enib.fr IML 107 / 120

Example : pizza

2
0
1
9
-0
8
-2
7

IML
Unsupervised - Clustering

k-means
Example : pizza

Page 107 :

Machine Learning
Supervised - Regression

Supervised - Classification
Unsupervised - Clustering

k-means
Hierarchical clustering
Distance

Example : pizza

C. BUCHE - buche@enib.fr IML 108 / 120

Example : pizza

2
0
1
9
-0
8
-2
7

IML
Unsupervised - Clustering

k-means
Example : pizza

Page 108 :

Machine Learning
Supervised - Regression

Supervised - Classification
Unsupervised - Clustering

k-means
Hierarchical clustering
Distance

Example : pizza

C. BUCHE - buche@enib.fr IML 109 / 120

Example : pizza

2
0
1
9
-0
8
-2
7

IML
Unsupervised - Clustering

k-means
Example : pizza

Page 109 :

Machine Learning
Supervised - Regression

Supervised - Classification
Unsupervised - Clustering

k-means
Hierarchical clustering
Distance

Model : k-means

def vector_mean(vectors):

compute the vector whose ith element is the mean of the ith elements of the

input vectors

n = len(vectors)

return scalar_multiply (1/n, vector_sum(vectors))

class KMeans:

def __init__(self , k):

self.k = k # number of clusters

self.means = None # means of clusters

def classify(self , input):

return the index of the cluster closest to the input

return min(range(self.k),key=lambda i: squared_distance(input , self.means[i

]))

C. BUCHE - buche@enib.fr IML 110 / 120

Model : k-means

def vector_mean(vectors):

compute the vector whose ith element is the mean of the ith elements of the

input vectors

n = len(vectors)

return scalar_multiply (1/n, vector_sum(vectors))

class KMeans:

def __init__(self , k):

self.k = k # number of clusters

self.means = None # means of clusters

def classify(self , input):

return the index of the cluster closest to the input

return min(range(self.k),key=lambda i: squared_distance(input , self.means[i

]))2
0
1
9
-0
8
-2
7

IML
Unsupervised - Clustering

k-means
Model : k-means

Page 110 :

Machine Learning
Supervised - Regression

Supervised - Classification
Unsupervised - Clustering

k-means
Hierarchical clustering
Distance

Model : k-means

def train(self , inputs):

choose k random points as the initial means

self.means = random.sample(inputs , self.k)

assignments = None

while True:

Find new assignments

new_assignments = map(self.classify , inputs)

If no assignments have changed , we are done

if assignments == new_assignments:

return

Otherwise keep the new assignments ,

assignments = new_assignments

And compute new means based on the new assignments

for i in range(self.k):

find all the points assigned to cluster i

i_points = [p for p, a in zip(inputs , assignments) if a == i]

make sure i_points is not empty so do not divide by 0

if i_points:

self.means[i] = vector_mean(i_points)

C. BUCHE - buche@enib.fr IML 111 / 120

Model : k-means

def train(self , inputs):

choose k random points as the initial means

self.means = random.sample(inputs , self.k)

assignments = None

while True:

Find new assignments

new_assignments = map(self.classify , inputs)

If no assignments have changed , we are done

if assignments == new_assignments:

return

Otherwise keep the new assignments ,

assignments = new_assignments

And compute new means based on the new assignments

for i in range(self.k):

find all the points assigned to cluster i

i_points = [p for p, a in zip(inputs , assignments) if a == i]

make sure i_points is not empty so do not divide by 0

if i_points:

self.means[i] = vector_mean(i_points)

2
0
1
9
-0
8
-2
7

IML
Unsupervised - Clustering

k-means
Model : k-means

Page 111 :

Machine Learning
Supervised - Regression

Supervised - Classification
Unsupervised - Clustering

k-means
Hierarchical clustering
Distance

Example : stickers

Context

. sticker printer can print at most five colors per sticker.

. there’s some way to take a design and modify it so that it
only contains five colors ?

Data

. images can be represented as two-dimensional array of pixels,
where each pixel is itself a three-dimensional vector (red,
green, blue) indicating its color.

. five-color version of the image
1 Choosing five colors
2 Assigning one of those colors to each pixel

C. BUCHE - buche@enib.fr IML 112 / 120

Example : stickers

Context

. sticker printer can print at most five colors per sticker.

. there’s some way to take a design and modify it so that it
only contains five colors ?

Data

. images can be represented as two-dimensional array of pixels,
where each pixel is itself a three-dimensional vector (red,
green, blue) indicating its color.

. five-color version of the image
1 Choosing five colors
2 Assigning one of those colors to each pixel

2
0
1
9
-0
8
-2
7

IML
Unsupervised - Clustering

k-means
Example : stickers

Page 112 :

Machine Learning
Supervised - Regression

Supervised - Classification
Unsupervised - Clustering

k-means
Hierarchical clustering
Distance

Example : stickers

path_to_png_file = r"C:\ images\image.png"

import matplotlib.image as mpimg

img = mpimg.imread(path_to_png_file)

top_row = img[0]

top_left_pixel = top_row [0]

red , green , blue = top_left_pixel

pixels = [pixel for row in img for pixel in row]

clusterer = KMeans (5)

clusterer.train(pixels)

def recolor(pixel):

cluster = clusterer.classify(pixel)

return clusterer.means[cluster]

new_img = [[recolor(pixel) for pixel in row]

for row in img]

plt.imshow(new_img)

plt.axis(’off’)

plt.show()

C. BUCHE - buche@enib.fr IML 113 / 120

Example : stickers

path_to_png_file = r"C:\ images\image.png"

import matplotlib.image as mpimg

img = mpimg.imread(path_to_png_file)

top_row = img[0]

top_left_pixel = top_row [0]

red , green , blue = top_left_pixel

pixels = [pixel for row in img for pixel in row]

clusterer = KMeans (5)

clusterer.train(pixels)

def recolor(pixel):

cluster = clusterer.classify(pixel)

return clusterer.means[cluster]

new_img = [[recolor(pixel) for pixel in row]

for row in img]

plt.imshow(new_img)

plt.axis(’off’)

plt.show()

2
0
1
9
-0
8
-2
7

IML
Unsupervised - Clustering

k-means
Example : stickers

Page 113 :

Machine Learning
Supervised - Regression

Supervised - Classification
Unsupervised - Clustering

k-means
Hierarchical clustering
Distance

K means

Demo !

C. BUCHE - buche@enib.fr IML 114 / 120

K means

Demo !

2
0
1
9
-0
8
-2
7

IML
Unsupervised - Clustering

k-means
K means

Page 114 :

Machine Learning
Supervised - Regression

Supervised - Classification
Unsupervised - Clustering

k-means
Hierarchical clustering
Distance

Alternative approach

“grow” clusters from the bottom up

1 Make each input its own cluster of one.

2 As long as there are multiple clusters remaining, find the two
closest clusters and merge them.

3 At the end, we’ll have one giant cluster containing all the
inputs. If we keep track of the merge order, we can recreate
any number of clusters by unmerging. For example, if we want
three clusters, we can just undo the last two merges.

k-means vs Hierarchical Clustering : HC do not need to specify k

C. BUCHE - buche@enib.fr IML 115 / 120

Alternative approach

“grow” clusters from the bottom up

1 Make each input its own cluster of one.

2 As long as there are multiple clusters remaining, find the two
closest clusters and merge them.

3 At the end, we’ll have one giant cluster containing all the
inputs. If we keep track of the merge order, we can recreate
any number of clusters by unmerging. For example, if we want
three clusters, we can just undo the last two merges.

k-means vs Hierarchical Clustering : HC do not need to specify k2
0
1
9
-0
8
-2
7

IML
Unsupervised - Clustering

Hierarchical clustering
Alternative approach

Page 115 :

Machine Learning
Supervised - Regression

Supervised - Classification
Unsupervised - Clustering

k-means
Hierarchical clustering
Distance

Distance

Name Egg-laying Scales Poisonous Cold-blooded Legs nb Reptile
Cobra True True True True 0 Yes
Rattlesnake True True True True 0 Yes
Boa False True False True 0 Yes
Chicken True True False False 2 No
Alligator True True False True 4 Yes
Frog True False True True 4 No
Salmon True True False True 0 No
Python True True False True 0 Yes

Features = four binary and one integer
Boa = (0,1,0,1,0)
Frog =(1,0,1,0,4)
Distance to separate ?

C. BUCHE - buche@enib.fr IML 116 / 120

Distance

Name Egg-laying Scales Poisonous Cold-blooded Legs nb Reptile
Cobra True True True True 0 Yes
Rattlesnake True True True True 0 Yes
Boa False True False True 0 Yes
Chicken True True False False 2 No
Alligator True True False True 4 Yes
Frog True False True True 4 No
Salmon True True False True 0 No
Python True True False True 0 Yes

Features = four binary and one integer
Boa = (0,1,0,1,0)
Frog =(1,0,1,0,4)
Distance to separate ?

2
0
1
9
-0
8
-2
7

IML
Unsupervised - Clustering

Distance
Distance

Page 116 :

Machine Learning
Supervised - Regression

Supervised - Classification
Unsupervised - Clustering

k-means
Hierarchical clustering
Distance

Distance : Euclidean

rattlesnake boa frog

rattlesnake 1.4 4.2
boa 1.4 4.4
frog 4.2 4.4

C. BUCHE - buche@enib.fr IML 117 / 120

Distance : Euclidean

rattlesnake boa frog

rattlesnake 1.4 4.2
boa 1.4 4.4
frog 4.2 4.4

2
0
1
9
-0
8
-2
7

IML
Unsupervised - Clustering

Distance
Distance : Euclidean

Page 117 :

Machine Learning
Supervised - Regression

Supervised - Classification
Unsupervised - Clustering

k-means
Hierarchical clustering
Distance

Distance : Euclidean

rattlesnake boa frog Alligator

rattlesnake 1.4 4.2 4.1
boa 1.4 4.4 4.1
frog 4.2 4.4 1.7
Alligator 4.1 4.1 1.7

Alligator is closer to a frog than a snake

C. BUCHE - buche@enib.fr IML 118 / 120

Distance : Euclidean

rattlesnake boa frog Alligator

rattlesnake 1.4 4.2 4.1
boa 1.4 4.4 4.1
frog 4.2 4.4 1.7
Alligator 4.1 4.1 1.7

Alligator is closer to a frog than a snake

2
0
1
9
-0
8
-2
7

IML
Unsupervised - Clustering

Distance
Distance : Euclidean

Page 118 :

Machine Learning
Supervised - Regression

Supervised - Classification
Unsupervised - Clustering

k-means
Hierarchical clustering
Distance

Distance : Euclidean

rattlesnake boa frog Alligator

rattlesnake 1.4 1.7 1.4
boa 1.4 2.2 1.4
frog 1.7 2.2 1.7
Alligator 1.4 1.4 1.7

Using binary Feature : Alligator is closer to a snake than a frog
Feature Engineering Matters

C. BUCHE - buche@enib.fr IML 119 / 120

Distance : Euclidean

rattlesnake boa frog Alligator

rattlesnake 1.4 1.7 1.4
boa 1.4 2.2 1.4
frog 1.7 2.2 1.7
Alligator 1.4 1.4 1.7

Using binary Feature : Alligator is closer to a snake than a frog
Feature Engineering Matters

2
0
1
9
-0
8
-2
7

IML
Unsupervised - Clustering

Distance
Distance : Euclidean

Page 119 :

Machine Learning
Supervised - Regression

Supervised - Classification
Unsupervised - Clustering

k-means
Hierarchical clustering
Distance

Machine Learning
IML

Cédric Buche

ENIB

27 août 2019

C. BUCHE - buche@enib.fr IML 120 / 120

Machine Learning
IML

Cédric Buche

ENIB

27 août 20192
0
1
9
-0
8
-2
7

IML
Unsupervised - Clustering

Distance

Page 120 :

	Machine Learning
	Supervised - Regression
	Supervised - Classification
	Unsupervised - Clustering

