
FLEX++ (1) COMMANDS FLEX++ (1)

NAME
flex++ – generate a scanner in c or c++..

SYNOPSIS
scanner++ [–bcFfdIiLpsTtv?] [–C[e][mfF]] [–atmp–directory] [–ooutfile] [–ginclude–pathname]

D

[–h[headerfile]] [–Sskeleton] [–Hheader–skeleton] grammar–file...

ESCRIPTION
Generate a scanner. Based on flex version 2.3.7. See flex(1) and flexdoc(1) for details of main func-

Y

tionality. Only changes are reported here.

ou now generate a C++ class if you are compiling with a C++ compiler. A generated header can be

t
generated, and is made from a skeleton–header. The code skeleton is also more adaptable. It permit you
o modify much things only by changing the two skeletons.

I

In plain C, the flex++ is compatible with standard flex.

f no header is generated, it is in fact merged, instead of included.

OPTIONS
–a tmp–directory

Set directory of temp files .

–Sskeleton
Set filename of code skeleton. Default is flexskel.cc.

–Hheader–skeleton
Set filename of header skeleton. Default is flexskel.h.

–h[header]
Set filename of header skeleton. Default is lex.yy.h, or c basename.h if –ois used and there is

t
no header name, .c, .cc, .C, .cpp, .cxx... options for output files are replaced by .h to generate
he header name.

–gincludefilename
change the filename that flex++ put in the ##include inside the code, when a separate header is

t
m
generated. Useful when the parameter name of the header contain pathname information tha

ay change.

DECLARATIONS
These are new declarations to put in the declaration section :

%name scanner name
Declare the name of this scanner. User for C++ class name, and to render many names unique.

%

default is lex. Must be given before %define, or never.

define define name content...
Declare a macro symbol in header and code. The name of the symbol is

b
YY ’scanner name’ ’define name’. The content if given after, as with #define. Newline can
e escaped as with #define. Many symbols are proposed for customisation.

%header{{
Like %{{, but include this text in the header. End with %}}. When put in declaration section,

t
the text is added before the definitions. It can be put at the begin of the second section so that
he text is added after all definition in the header.

DECLARATION DEFINE SYMBOLS
These are the symbols you can define with %define in declaration section, or that are already defined.

F

Remind that they are replaced by a preprocessor ##define YY ’scanner name’ ’name.

LEX SCANNER
Automaticaly defined in the code. used for conditioanl code. it is effectively defined at the

G

point of the %name directive, or at the point of the %% between section 1 and 2.

NU and RDT Last change: 3/3/93 1

)FLEX++ (1) COMMANDS FLEX++ (1

CHAR Automaticaly defined in the code. Define the type of char used depending of the 8–bits flag
e

d
(unsigned char if 8–bit, char if 7–bit). it is effectively defined at the point of the %nam
irective, or at the point of the %% between section 1 and 2. You cannot use it before.

FLEX DEBUG
Automaticaly defined in the code if debug option –d set. Define the type of char used depend-

p
ing of the 8–bits flag (unsigned char if 8–bit, char if 7–bit). it is effectively defined at the
oint of the %name directive, or at the point of the %% between section 1 and 2. You cannot

use it before.

GDEBUG FLA
The runtime debug flag name. Default is yy flex debug. See yy flex debug in flex. Used only
in debug mode.

TDEBUG INI
The runtime debug flag initial value. Default is 1. See yy flex debug in flex.

L

TEXT The scanned text string. default yytext. See yytext in flex.

ENG The scanned text length. default yyleng. See yyleng in flex.

O

IN The input file pointer. default yyin. See yyin in flex.

UT The input file pointer. default yyout. See yyout in flex.

.

L

LEX The scanner function name. default yylex. See yylex in flex. Replace ##define YYDECL

EX RETURN
The scanner function return type. default int. See yylex in flex. Replace ##define YYDECL.

LEX PARAM
The scanner function parameter list. default void, or empty un old–C. See yylex in flex.

L

Replace ##define YYDECL.

EX PARAM DEF
The scanner function parameter declaration for old–C. Defined and used only in old–C. Default

,
L
empty . See yylex in flex. Replace ##define YYDECL. For example to pass an int, named x

EX PARAM

is set to x, and LEX PARAM DEF to int x ;.

RESTART
The restart function name. default yyrestart. See yyrestart in flex.

L

SWITCH TO BUFFER

OAD BUFFER STATE

D

CREATE BUFFER

ELETE BUFFER

INIT BUFFER
The buffer control functions names. defaults are yy switch to buffer, yy load buffer state,

C

yy create buffer, yy delete buffer, yy init buffer. See this functions in flex.

URRENT BUFFER
The name of the pointeur to the current buffer. Without class, it is yy current buffer, and the

s
Y
old macro YY CURRENT BUFFER is defined to it’s value. With class, the default value i

Y CURRENT BUFFER, and there is no macro YY CURRENT BUFFER.

C

These are only used if class is generated.

LASS The class name. default is the scanner name.

INHERIT
The inheritance list. Don’t forget the : before, if not empty list.

2GNU and RDT Last change: 3/3/93

FLEX++ (1) COMMANDS FLEX++ (1)

MEMBERS
List of members to add to the class definition, before ending it.

eECHO The scanner echo member function boby. Default to yy echo. this function is called by th
macro ECHO. See ECHO on flex.

INPUT The block input member function . This function is called inside the macro YY INPUT. It read

F

a block of text to be scanned. Default is to read yyin. See YY INPUT.

ATAL ERROR
The error message member function . This function is called inside the macro

e
Y
YY FATAL ERROR. Default is to write the message to stderr and exit . Se

Y FATAL ERROR.

WRAP The wrap member function . This function is called inside the macro yywrap(). Default is to
return 1 . See yywrap() in flex.

E

I

ECHO PUR

NPUT PURE

E

W

FATAL ERROR PUR

RAP PURE
Indicate that the corresponding member function is to be pure. It implys automatically the

E

function NOCODE symbol

CHO NOCODE

E

F

INPUT NOCOD

ATAL ERROR NOCODE

WRAP NOCODE
Indicate that the corresponding member function is not to be defined in the generated code, but
outside by yourself. Activated automaticaly by the function PURE symbols.

E

I

ECHO COD

NPUT CODE

E

W

FATAL ERROR COD

RAP CODE
Give the body code of the corresponding member function. default is to implement standard

C

behaviour. Ignored if function PURE or function NOCODE are defined.

ONSTRUCTOR PARAM
List of parameters of the constructor. Dont allows default value.

CONSTRUCTOR INIT
List of initialisation befor constructor call. If not empty dont’t forget the : before list of initiali-

C

sation.

ONSTRUCTOR CODE
Code added after internal initialisations in constructor.

DESTRUCTOR CODE
Code added before internal cleanup in destructor.

IOSTREAM
If defined, this flag make flex use the iostream library. The behaviour is much the same, but

d
instead of FILE , yyin and yyout are istream and ostream . they point to cin and cout by
efault. Debug message and fatal error are printed on cerr. BUFFER refers to istream

e
s
instead of FILE . These values are default, but like with stdio you can change them with th
ame %define. iostream.h is also included.

3GNU and RDT Last change: 3/3/93

FLEX++ (1) COMMANDS FLEX++ (1)

IFILE Type of the structure that represent IN file (yyin). Normally FILE, or istream if IOSTREAM
is defined. BUFFER function use also pointer to this type.

IFILE DEFAULT
Initial value of IN (yyin). Normally stdin, or &cin if IOSTREAM is defined.

-OFILE Type of the structure that represent OUT file (yyout). Normally FILE, or ostream if IOS
TREAM is defined.

OFILE DEFAULT
Initial value of OUT (yyout). Normally stdout, or &cout if IOSTREAM is defined.

ERRFILE
File handle used to output debug message, and also fatal errors. Default is stderr or cerr if
IOSTREAM is defined.

SOBSOLETED FUNCTION
yyinput()

In C++, the member function yyinput() is equivalent to input() that read one char. It is kept

p
for compatibility with old flex behaviour, that replaced in C++ ,the function input() with yyin-

ut() not to colide with stream library. Don’t mismatch it with yy input(char buf, int

O

&result, int max size) which read a bloc to be buffered.

BSOLETED PREPROCESSOR SYMBOLS
if you use new features, the folowing symbols should not be used, though they are proposed. Incoher-

Y

ence may arise if they are defined simultaneously with the new symbol.

YDECL
In C only. Prefer %define LEX, %define LEX RETURN, %define LEX PARAM, %define

r
t
LEX PARAM DEF. Totaly ignored with classes, or if you %define one of these symbols, o
he symbol LEX DEFINED, since it mean you use the new ways to redefine yylex declara-

tion. Never use it if header are generated, since the declared function would be wrong.

ryy new buffe
In C only. Prefer %define CREATE BUFFER.

YY CHAR
like with old flex. You should better use the %define’ed symbol CHAR, or not use this your-
self, since you know if you are 8 or 7–bit. Not defined in separate header.

GFLEX DEBU
Like with old flex. activate trace. prefer the automaticaly added %define DEBUG . Defined if

F

debug option –d set.

LEX SCANNER
like with old flex. defined in the scanner itself .

YY END TOK
Like with old flex. Indicate the value returned at end by yylex. Don’t redefine it, since it is

C

only informative. Value is 0.

ONSERVED PREPROCESSOR SYMBOLS
These symbols are kept, and cannot be defined elsewhere, since they control private parameters of the

t
generated parser, or are actually unused. You can ##define them to the value you need, or indirectly to
he name of a %define generated symbol if you want to be clean.

YY READ BUF SIZE
Size of read buffer (8192). You must undefine it to redefine it after, like like with old flex.

YY BUF SIZE
Total size of read buffer (YY READ BUF SIZE 2). You must undefine it to redefine it

G

after, except if defined by cpp , like with old flex.

NU and RDT Last change: 3/3/93 4

)FLEX++ (1) COMMANDS FLEX++ (1

yyterminate()
like with old flex. default return YY NULL, that is 0.

YY BREAK
Like with old flex. Don’t use it, it is supported but dangerous.

YY NEW FILE
Action to continue scanning with the repopened file in yyin. like with old flex. Normally nor to

T

be changed.

hese are used only without classes, and you should redefine corresponding virtual function with

E

classes, instead of the macros themselves.

CHO like with old flex. With classes it is mapped to the virtual function yy echo(), and you should
not modify the macro itself. This name can be changed with %define ECHO.

TYY INPU
like with old flex. With classes it use the virtual function yy input(), and you should not

Y

modify the macro itself. This name can be changed with %define INPUT.

Y FATAL ERROR
like with old flex. With classes it is mapped to the virtual function yy fatal error(), and you

e
F
should not modify the macro itself. This name can be changed with %defin

ATAL ERROR.

yywrap like with old flex. With classes it is mapped to the virtual function yy wrap(), and you should

O

not modify the macro itself. This name can be changed with %define WRAP.

THER ADDED PREPROCESSOR SYMBOLS
YY USE CLASS

indicate that class will be produced. Default if C++.

C++ CLASS GENERATED
To simplify the notation, we note %SYMBOLNAME the preprocessor symbol generated with a

N

%define of this name. In fact see the use of %define for it’s real name.

ote that there is sometime symbols that differ from only an underscore , like yywrap and yy wrap.

m
They are much different. In this case yy wrap() is a virtual member function, and yywrap() is a

acro.

General Class declaration
// Here is the declaration made in the header

p

{

class %CLASS %INHERIT

rivate:/ data /

.

p

// Secret, don’t use

rivate: / functions /

i

void yy initialize();

nt input();

int yyinput() {return input();};

;

/

void yyunput(%CHAR c, %CHAR buf ptr)

/ Others are secret, don’t use.

Y

protected:/ non virtual /

Y BUFFER STATE %CURRENT BUFFER;

GNU and RDT Last change: 3/3/93 5

)FLEX++ (1) COMMANDS FLEX++ (1

void %RESTART (FILE input file);

;

v

void %SWITCH TO BUFFER(YY BUFFER STATE new buffer)

oid %LOAD BUFFER STATE(void);

;

v

YY BUFFER STATE %CREATE BUFFER(FILE file, int size)

oid %DELETE BUFFER(YY BUFFER STATE b);

;

p

void %INIT BUFFER(YY BUFFER STATE b, FILE file)

rotected: / virtual /

// these 4 virtual function may be declared PURE (=0), with the symbols like %ECHO PURE,...

e
%
// these 4 virtual function may not be defined in the generated code, with the symbol lik

ECHO NOCODE,...

// these 4 virtual function may be defined with another code, with the symbol like ECHO CODE,...

v

virtual void %ECHO();

irtual int %INPUT(char buf,int &result,int max size);

v

virtual void %FATAL ERROR(char msg);

irtual int %WRAP();

%

public:

CHAR %TEXT;

F

int %LENG;

ILE %IN, %OUT;

%LEX RETURN %LEX (%LEX PARAM);

˜

%CLASS(%CONSTRUCTOR PARAM) ;

%CLASS() ;

0

i

#if %DEBUG !=

nt %DEBUG FLAG;

p

#endif

ublic: / added members /

}

%MEMBERS

;

// this is the code for the virtual function

E

v

// may be disabled with symbol like ECHO PURE or ECHO NOCOD

oid %CLASS::%ECHO() // echo the current token

i

{%ECHO CODE}

nt %CLASS::%INPUT(char buffer,int &result,int max size) // read a bloc of text

v

{%INPUT CODE}

oid %CLASS::%FATAL ERROR(char msg) // print a fatal error

i

{%FATAL ERROR CODE}

nt %CLASS::%WRAP() // decide if we must stop input, or continue

G

{%WRAP CODE}

NU and RDT Last change: 3/3/93 6

)FLEX++ (1) COMMANDS FLEX++ (1

Default Class declaration
// Here is the default declaration made in the header when you %define nothing

p

{

class lexer

rivate:/ data /

.

p

// Secret, don’t use

rivate: / functions /

i

void yy initialize();

nt input();

int yyinput() {return input();};

;

/

void yyunput(unsigned char c, unsigned char buf ptr)

/ Others are secret, don’t use.

Y

protected:/ non virtual /

Y BUFFER STATE YY CURRENT BUFFER;

v

void yyrestart (FILE input file);

oid yy switch to buffer(YY BUFFER STATE new buffer);

Y

void yy load buffer state(void);

Y BUFFER STATE yy create buffer(FILE file, int size);

v

void yy delete buffer(YY BUFFER STATE b);

oid yy init buffer(YY BUFFER STATE b, FILE file);

v

protected: / virtual /

irtual void yy echo();

virtual int yy input(char buf,int &result,int max size);

v

virtual void yy fatal error(char msg);

irtual int yy wrap();

u

public:

nsigned char yytext;

F

int yyleng;

ILE yyin, yyout;

l

int yylex (void);

exer() ;

;

#

˜ lexer()

if YY lexer DEBUG != 0

#

int yy flex debug;

endif

public: / added members /

/

};

/ this is the code for the virtual function

GNU and RDT Last change: 3/3/93 7

)FLEX++ (1) COMMANDS FLEX++ (1

void lexer::yy echo() // echo the current token

i

{fwrite((char) yytext, yyleng, 1, yyout);}

nt lexer::yy input(char buffer,int &result,int max size) // read a bloc of text

v

{return result= fread(buffer, 1,max size, yyin);}

oid lexer::yy fatal error(char msg) // print a fatal error

i

{fputs(msg, stderr);putc(’n’, stderr);exit(1);}

nt lexer::yy wrap() // decide if we must stop input, or continue

USAGE

{return 1;}

Should replace flex, because it generate a far more customisable parser, with header, still beeing compa-

Y

tible.

ou should always use the header facility.

E

Use it with bison++ (same author).

XEMPLES
flex++ use itself to generate it’s scanner. It is full compatible with classic flex.

r
v
This man page has been produced through a parser made in C++ with this version of flex++ and ou
ersion of bison++ (same author).

FILES
flexskel.cc

main skeleton.

flexskel.h
header skeleton.

D
ENVIRONNEMENT

IAGNOSTICS
SEE ALSO

flex(1),flexdoc(1),bison++(1).

B
DOCUMENTATION

UGS
Tell us more !

Because flex++ put a ##include of the generated header in the generated code, the header is necessary,

w
and must be reachable by cpp. use the –g option to change the pathname of this file. Problems arise

hen the header is generated in another directory, or is moved.

t
u
Parameters are richer than before, and nothing is removed. POSIX compliance can be enforced by no
sing extensions. If you want to forbide them, there is a good job for you.

e
s
The grammar file scanner now support any EndOfLine sequence (CR, LF, CRLF), event inside th
ame file. So dont worry if it accept files from MSDOS, MacIntosh, and UNIX, with neither any mes-

T

sage nor any problem. This is not a bug.

he automatic %define symbols FLEX DEBUG, FLEX SCANNER and CHAR, are added only after

%
the %name directive, or at the %% between section 1 and 2. You cannot use them before, neither in

header{{, nor %{{. A good practice is to always give a name, and to give it at first. The old ##define

F

symbols are still defined at top for backward compatibility.

UTUR WORKS
!

G

tell us

NU and RDT Last change: 3/3/93 8

)FLEX++ (1) COMMANDS FLEX++ (1

POSIX compliance. is’nt it good now ?

I

compatibility with flex 2.4 ? possible ?

NSTALLATION
With this install the executable is named flex++. rename it flex if you want, because it could replace

A
TESTS

flex. Another good name, could ne flex pp like Dos version use.

UTHORS
Alain Coe

..
tmeur (coetmeur@icdc.fr), R&D department (RDT) , Informatique–CDC, France.

RESTRICTIONS
The words ’we’, and ’us’ mean the author and colleages, not GNU. We don’t have contacted GNU

t
y
about this, nowaday. If you’re in GNU, we are ready to propose it to you, and you may tell us wha
ou think about.

Based on GNU version 2.3.8 of flex. Modified by the author.

9GNU and RDT Last change: 3/3/93

