
BISON++(1) COMMANDS BISON++(1)

NAME
bison++ – generate a parser in c or c++.

SYNOPSIS
bison++ [–dltvyVu] [–b file–prefix] [–p name–prefix] [–o outfile] [–h headerfile] [–S skeleton] [–H

]
[
header–skeleton] [––debug] [––defines] [––fixed–output–files] [––no–lines] [––verbose] [––version
––yacc] [––usage] [––help] [––file–prefix=prefix] [––name–prefix=prefix] [––skeleton=skeletonfile]

D

[––headerskeleton=headerskeletonfile] [––output=outfile] [––header–name=header] grammar–file

ESCRIPTION
Generate a parser. Based on bison version 1.19. See bison(1) for details of main functionality. Only

Y

changes are reported here.

ou now generate a C++ class if you are compiling with a C++ compiler. The generated header is far

g
more rich than before, and is made from a skeleton–header. The code skeleton is also richer, and the
enerated code is less important compared to the skeletons. It permit you to modify much things only

I

by changing the two skeletons.

n plain C, the bison++ is compatible with standard bison.

OPTIONS
––name–prefix=prefix

–p prefix
Set prefix of names of yylex,yyerror. keeped for compatibility, but you should prefer %define

–

LEX newname, and similar.

–skeleton=skeleton

–S skeleton
Set filename of code skeleton. Default is bison.cc.

–

––headerskeleton=header–skeleton

H header–skeleton
Set filename of header skeleton. Default is bison.h.

–

––header–name=header

h header
Set filename of header skeleton. Default is y.tab.h, or prefix.h if option –b is used or

r
h
c basename.h if –o is used. .c, .cc, .C, .cpp, .cxx options for output files are replaced by .h fo
eader name.

DECLARATIONS
These are new declarations to put in the declaration section :

%name parser name
Declare the name of this parser. User for C++ class name, and to render many names unique.

%

default is parse. Must be given before %union and %define, or never.

define define name content...
Declare a macro symbol in header and code. The name of the symbol is

e
YY ’parser name’ ’define name’. The content if given after, as with #define. Newline can be
scaped as with #define. Many symbols are proposed for customisation.

%union
as with bison generate a union for semantic type. The difference is that the union is named
yy ’parser name’ stype.

r%pure parse
As with bison in C. In C++ generate a parser where yylval, and yylloc (if needed) are passed

.
N
as parameter to yylex, and where some instance variable are local to yyparse (like yydebug...)

ot very useful, since you can create multiple instances for reentering another parser.

1GNU and RDT Last change: 3/3/93

BISON++(1) COMMANDS BISON++(1)

%header{{
Like %{{, but include this text both in the header, and in the code. End with %}}. When put in

o
t
declaration section, the text is added before the definitions. It can be put in the last section s
hat the text is added after all definition in the header, and in the last section at the current

N

position in the code.

ote that the order of these declaration is important, since they are translated into preprocessor sym-

n
pols, typedef or code depending on their type. For example use %name before any %define, since the
ame is needed to compose the name of the define symbols. Order of %header and %union is impor-

D

tant, since type may be undefined.

ECLARATION DEFINE SYMBOLS
These are the symbols you can define with %define in declaration section, or that are already defined.

B

Remind that they are replaced by a preprocessor ##define YY ’parser name’ ’name.

ISON defined to 1 in the code. used for conditional code. Don’t redefine it.

h included
defined in the code, and in the header. used for include anti–reload. Don’t redefine it.

COMPATIBILITY
Indicate if obsoleted defines are to be used and produced. If defined to 0, indicate no compati-

i
bility needed, else if defined to non–0, generate it. If it is undefined, default is to be compatible
f classes are not used.

USE GOTO
Indicates (if defined as 1) that goto are to be used (for backward compatibility) in the parser

c
function. By default goto are replaced with a switch construction, to avoid problems with some
ompiler that don’t support goto and destructor in the same function block. If COMPATIBIL-

w
ITY is 1, and USE GOTO is not defined, then USE GOTO is defined to 1, to be compatible

ith older bison.

USE CONST TOKEN
Indicate (if defined as 1) that static const int are to be used in C++, for token IDs. By default

E

an enum is used to define the token IDs instead of const.

NUM TOKEN
When enum are used instead of static const int for token IDs, this symbol define the name of

P

the enum type. Defined to yy ’parser name’ enum token by default.

URE Indicate that %pure parser is asked... Don’t redefine it.

LSP NEEDED
if defined indicate that @ construct is used, so LLOC stack is needed. Can be defined to force

DEBUG

use of location stack.

if defined to non–0 activate debugging code. See YYDEBUG in bison.

ERROR VERBOSE
if defined activate dump parser stack when error append.

nSTYPE the type of the semantic value of token. defined by %union. default is int. See YYSTYPE i
bison. Don’t redefine it, if you use a %union.

LTYPE
The token location type. If needed default is yyltype. See YYLTYPE in bison. default yyltype

L

is a typedef and struct defined as in old bison.

LOC The token location variable name. If needed, default is yylloc. See yylloc in bison.

C

LVAL The token semantic value variable name. Default yylval. See yylval in bison.

HAR The lookahead token value variable name. Default yychar. See yychar in bison.

2GNU and RDT Last change: 3/3/93

BISON++(1) COMMANDS BISON++(1)

P

LEX The scanner function name. Default yylex. See yylex in bison.

ARSE The parser function name. Default yyparse. See yyparse in bison.

PARSE PARAM
The parser function parameters declaration. Default void in C++ or ANSIC, nothing if old C.

.
D
In ANSIC and C++ contain the prototype. In old–C comtaim just the list of parameters name

on’t allows default value.

PARSE PARAM DEF
The parser function parameters definition, for old style C. Default nothing. For example to use

A
an int parameter called x, PARSE PARAM is x, and PARSE PARAM DEF is int x;. In

NSIC or C++ it is unuseful and ignored.

ERROR
The error function name. Default yyerror. See yyerror in bison.

NERRS
The error count name. Default yynerrs. See yynerrs in bison.

DEBUG FLAG
The runtime debug flag. Default yydebug. See yydebug in bison.

C

These are only used if class is generated.

LASS The class name. default is the parser name.

INHERIT
The inheritance list. Don’t forget the : before, if not empty list.

MEMBERS
List of members to add to the class definition, before ending it.

LEX BODY
The scanner member function boby. May be defined to =0 for pure function, or to an inline
body.

YERROR BOD
The error member function boby. May be defined to =0 for pure function, or to an inline body.

CONSTRUCTOR PARAM
List of parameters of the constructor. Dont allows default value.

CONSTRUCTOR INIT
List of initialisation befor constructor call. If not empty dont’t forget the : before list of initiali-

C

sation.

ONSTRUCTOR CODE
Code added after internal initialisation in constructor.

OBSOLETED PREPROCESSOR SYMBOLS
if you use new features, the folowing symbols should not be used, though they are proposed. The sym-

-
o
bol COMPATIBILITY control their disponibility. Incoherence may arise if they are defined simultane
usly with the new symbol.

YYLTYPE
prefer %define LTYPE.

YYSTYPE
prefer %define STYPE.

YYDEBUG
prefer %define DEBUG.

YYERROR VERBOSE
prefer %define ERROR VERBOSE.

GNU and RDT Last change: 3/3/93 3

)BISON++(1) COMMANDS BISON++(1

YYLSP NEEDED
prefer %define LSP NEEDED.

yystype Now a preprocessor symbol instead of a typedef. prefer yy ’parser name’ stype.

CONSERVED PREPROCESSOR SYMBOLS
These symbols are kept, and cannot be defined elsewhere, since they control private parameters of the

t
generated parser, or are actually unused. You can ##define them to the value you need, or indirectly to
he name of a %define generated symbol if you want to be clean.

YYINITDEPTH
initial stack depth.

YYMAXDEPTH
stack overflow limit depth.

yyoverflow
instead of expand with alloca, realloc manualy or raise error.

OTHER ADDED PREPROCESSOR SYMBOLS
YY USE CLASS

indicate that class will be produced. Default if C++.

C++ CLASS GENERATED
To simplify the notation, we note %SYMBOLNAME the preprocessor symbol generated with a

N

%define of this name. In fact see the use of %define for it’s real name.

ote that there is sometime symbols that differ from only an underscore , like yywrap and yy wrap.

m
They are much different. In this case yy wrap() is a virtual member function, and yywrap() is a

acro.

General Class declaration
T

p

{

class %CLASS %INHERI

ublic:

#if %USE CONST TOKEN != 0

s

static const TOKEN NEXT;

tatic const AND SO ON;

#

// ...

else

enum %ENUM TOKEN { %NULL TOKEN

,

,TOKEN FIRST=256

TOKEN NEXT=257

/

} ;

,AND SO ON=258

/ ...

f

p

#endi

ublic:

int %PARSE (%PARSE PARAM);

;

G

virtual void %ERROR(char msg) %ERROR BODY

NU and RDT Last change: 3/3/93 4

)BISON++(1) COMMANDS BISON++(1

#ifdef %PURE

// if %PURE , we must pass the value and (eventually) the location explicitely

/

#ifdef %LSP NEEDED

/ if and only if %LSP NEEDED , we must pass the location explicitely

;

#

virtual int %LEX (%STYPE %LVAL,%LTYPE %LLOC) %LEX BODY

else

virtual int %LEX (%STYPE %LVAL) %LEX BODY;

#else

#endif

// if not %PURE , we must declare member to store the value and (eventually) the location

/

explicitely

/ if not %PURE ,%NERRS and %CHAR are not local variable to %PARSE, so must be

v

member

irtual int %LEX() %LEX BODY;

#

%STYPE %LVAL;

ifdef %LSP NEEDED

#

%LTYPE %LLOC;

endif

int %NERRS;

#

#endif

int %CHAR;

if %DEBUG != 0

int %DEBUG FLAG; / nonzero means print parse trace /

p

#endif

ublic:

%CLASS(%CONSTRUCTOR PARAM);

%

public:

MEMBERS

/

};

/ here are defined the token constants

#

// for example:

if %USE CONST TOKEN != 0

;

/

#endif

const %CLASS::TOKEN FIRST=1

/ here is the construcor

%CLASS::%CLASS(%CONSTRUCTOR PARAM) %CONSTRUCTOR INIT

G

{

NU and RDT Last change: 3/3/93 5

)BISON++(1) COMMANDS BISON++(1

#if %DEBUG != 0

;

#

%DEBUG FLAG=0

endif

%CONSTRUCTOR CODE;

D

};

efault Class declaration
// Here is the default declaration made in the header when you %define nothing

t

// typical yyltype

ypedef struct yyltype

i

{

nt timestamp;

i

int first line;

nt first column;

i

int last line;

nt last column;

}

char text;

yyltype;

n

c

// class definitio

lass parser

p

{

ublic:

enum yy parser enum token { YY parser NULL TOKEN

,

,TOKEN FIRST=256

TOKEN NEXT=257

/

} ;

,AND SO ON=258

/ ...

public:

int yyparse (yyparse PARAM);

;

#

virtual void yyerror(char msg)

ifdef YY parser PURE

#ifdef YY parser LSP NEEDED

;

#

virtual int yylex (int yylval,yyltype yylloc)

else

virtual int yylex (int yylval) ;

#else

#endif

virtual int yylex() %LEX BODY;

G

int yylval;

NU and RDT Last change: 3/3/93 6

)BISON++(1) COMMANDS BISON++(1

#ifdef YY parser LSP NEEDED

#

yyltype yylloc;

endif

int yynerrs;

#

#endif

int yychar;

if YY parser DEBUG != 0

#

int yydebug;

endif

:

p

public

arser();

}

public:

;

// here is the constructor code

#

{

parser::parser()

if YY parser DEBUG != 0

#

yydebug=0;

endif

USAGE

};

Should replace bison, because it generate a far more customisable parser, still beeing compatible.

U

You should always use the header facility.

se it with flex++ (same author).

EXEMPLES
This man page has been produced through a parser made in C++ with this version of bison and our ver-

FILES

sion of flex++ (same author).

bison.cc
main skeleton.

.

b

bison.h header skeleton

ison.hairy
old main skeleton for semantic parser. Not adapted to this version. Kept for future works.

D
ENVIRONNEMENT

IAGNOSTICS
SEE ALSO

bison(1), bison.info (use texinfo), flex++(1).

B
DOCUMENTATION

UGS
Tell us more !

The %semantic parser is no more supported. If you want to use it, adapt the skeletons, and maybe
-

p
bison++ generator itself. The reason is that it seems unused, unuseful, not documented, and too com
lex for us to support. tell us if you use, need, or understand it.

7GNU and RDT Last change: 3/3/93

BISON++(1) COMMANDS BISON++(1)

p
Header is not included in the parser code. Change made in the generated header are not used in the
arser code, even if you include it volontarily, since it is guarded against re–include. So don’t modify

F

it.

or the same reasons, if you modify the header skeleton, or the code skeleton, report the changes in the

U

other skeleton if applicable. If not done, incoherent declarations may lead to unpredictable result.

se of defines for YYLTYPE, YYSTYPE, YYDEBUG is supported for backward compatibility in C,

t
but should not be used with new features, as %defines or C++ classes. You can define them, and use
hem as with old bison in C only.

Parameters are richer than before, and nothing is removed. POSIX compliance can be enforced by not

F

using extensions. If you want to forbide them, there is a good job !

UTUR WORKS
!

S

tell us

upport semantic parser. Is it really used ?

U

POSIX compliance. is’nt it good now ?

se lex and yacc (flex/bison) to generate the scanner/parser. It would be comfortable for futur works,

i

though very complicated. Who feel it good ?

ostream : this is a great demand. this work will be done as soon as possible. The virtual members per-

I

mit such work still easily.

NSTALLATION
With this install the executable is named bison++. rename it bison if you want, because it could replace

A
TESTS

bison.

UTHORS
Alain Coe

..
tmeur (coetmeur@icdc.fr), R&D department (RDT) , Informatique–CDC, France.

RESTRICTIONS
The words ’author’, and ’us’ mean the author and colleages, not GNU. We don’t have contacted GNU

t
y
about this, nowaday. If you’re in GNU, we are ready to propose it to you, and you may tell us wha
ou think about.

Based on GNU version 1.21 of bison. Modified by the author.

8GNU and RDT Last change: 3/3/93

